Programming - User Support

f

Applications

Issue Number 63

ISSN # 0748-9331

September/October 1993

SCSI EPROM Programmer part Il
Z-System Corner
DR S-100
Real Computing
Support Groups
IDE Drives part li
6809 Operating Systems
Multiprocessing Part Il

Mr. Kaypro

US$4.00

- | PT68K4-16 with IMB

OSXXX COMPUIER

PRODUCITS From
Peripheral Technology

| 68000 System Boards with 4 Serial/

2 Parallel Ports, FDC, and RTC.
$299.00
PT68K2-10 w/ 1IMB (Used) $149.00
- REX Operating System Included

0S9 V2.4 Operating System $299.00
With C, Editor, Assembler/Linker

7‘ ISCULPTOR V1.14:6 for Business

Software Development - requires any
version of OS9/68K. $79.00

Other 68XXX products available!
1480 Terrell Mill Rd. #870
Marietta, GA 30067
404/973-2156

Cross-Assemblers «owasssooo
SlmUIatorSa310was$100.00
Cross-Disassemblers asowza ~1om
Developer Packages

as low as $200.00(a $50.00 Savings

A New Project
Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.

Get It To Market--FAST

Don’t wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the hardware is built.

No Source!
Aminor glitch has shown up in the firmware, and you can't find the original
source program. QOur line of disassemblers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'il be ready for anything.

Quality Solutions

PseudoCorp has been providing quality solutions for microprocessor
problems since 1985,

BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families {with
more in development):
Intel 8048 RCA 1802,05 Intel 8051 Intel 8096

Motorola 6800 Motorola 6801 Motorola 68HC 11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02
Rockwell 65C02 Intel 8080,85 Zilog Z80 NSC 800

Hitachi HD64180 Motorola 68000,8 Motorola 68010 Intel 80C196
e All products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develog)mcnt Products Group
716 Thimble Shoals Bivd. Suite E
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

Joumey with us to discover the shortest path between
programming problems and efficient solutions.

The Forth programming language is a model of simplicity:
Inabout 16K, itcanofferacomplete development systeminterms
of compiler, editor,and assembler,aswell asaninterpretivemode
to enhance debugging, profiling, and tracing.

As an “open” language, Forth lets you build new control-flow
structures,and other compiler-oriented extensions that closed
languages do not.

Forth Dimensions is the magazine to help you along this
journey. Itisone of the benefits you receive asamember of the
non-profit Forth Interest Group (FIG). Local chapters, the
GEnie™ForthRoundTable,andannual FORML conferencesare
alsosupported by FIG. To receive a mail-order catalog of Forth
literature and disks, call 510-89-FORTH or write to:

Forth Interest Group, P.O. Box 2154, Oakland, CA 94621.
| Membership dues begin at $40 for the U.S.A. and Canada.
Student rates begin at $18 (with valid student LD.).

GEnie is a trademark of General Electric.

"SAGE MICROSYSTEMS EAST

Selling and Supporting the Best in 8-Bit Software

Z3PLUS or NZCOM (now only $20 each)
ZSDOS/ZDDOS date stamping BDOS ($30)

ZCPR34 source code ($15)
BackGrounder-ii ($20)
ZMATE text editor ($20)
BDS C for Z-system (only $30)
DSD: Dynamic Screen Debugger ($50)
4DOS "zsystem" for MSDOS ($65)
ZMAC macro-assembler ($45 with printed manual)

Kaypro DSDD and MSDOS 360K FORMATS ONLY
Order by phone, mail, or modem and use
Check, VISA, or MasterCard. Please include
$3.00 Shipping and Handling for each order.

Sage Microsystems East
1435 Centre Street
Newton Centre MA 02159-2469
(617) 965-3552 (voice 7PM to 11PM)
(617) 965-7259 (pw=DDT)
MABOS on PC-Pursuit

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Bill D. Kibler

Technical Consultant
Chris McEwen

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriquez
Matt Mercaldo
Tim McDonough
Frank Sergeant
JW Weaver
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 535, Lincoln, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1993
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44 two
years (12 issues). All funds must be
in U.S. dollars drawn on a U.S.
bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to. The Computer Journal,
P.O. Box 535, Lincoln,CA 95648.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowiedged, and we apologize for any we have
overiooked.

Apple Il, ll+ lic, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket;
Nantucket, Inc. dBase, dBASE |l, dBASE I, dBASE I
Plus, dBASE 1V, Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar, MicroPro Inter-
national. IBM-PC, XT, and AT, PC-DOS; |1BM Corpora-
tion. Z80, Z280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally acknowledged in each occurrence

TC

The Computer Journal

Issue Number 63 September/October 1993

Editor's Comments..............ccc.e.. treeesssrennnrerrreessrnnns 2
Reader to Reader.........cccccormemmeinricrriinneccinennnrseniiene. 3
Support Groups for the Classicsccccccvnieeirennnnes 8
By JW Weaver.

Z-Systems Corner.................. SRR -
Failsafe Scripts in 4DOS.

By Jay Sage.

DR S-100....cccvcirrriinrinnnnnn P b
Disk Drives and CP/M BIOS coding.

By Herb Johnson.

Real Computingcociveveniennn vevssrssssnsassnrannren veeneens 19

Language discussion.
By Rick Rodman.

Mr. Kayprocccccveeeeeennne Ceeeteresterere e arnrateeesearsnnrnanens 22
Replacing the power supply.
By Charles B. Stafford.

(07:111 {-1 g oo [[P 25
The XEROX 820.
Connecting IDE Drivesccvvvveen vrreereaeraeeeareenees 29

Drive basics in this part II.
By Tilmann Reh.

SCSI EPROM Programmerccccocvcecmenrecrreesnnenns 33

The software in this part Ii.
By Terry Hazen.

Operating Systemsccccccvvirreiiennnccnnennnssseneenens 36
What is available for the 68089.

By Bill Kibler.

Multiprocessing for the Impoverished.................... 40

Part Il, sharing the BUS.
By Brad Rodriguez.

Reminiscing and Musings ceerrnesmr 47
By Frank Sergeant.

The Computer Corner............... OSSR ¥
By Bill Kibler.

EDITOR'S COMMENTS

Welcome to i1ssue #63. Chock full of
good items for your reading pleasure.
On time again as well! Our stable of
regulars is back in force and we have
more installments on our ever going
projects list.

The Reader to Reader section is bust-
ing with items that are asking for help,
and giving some as well. Robert
Edgecombe gives some tips on
MOVing CP/M. John Baker gives
some insights to using CP/M on an
Apple. ZX81 schematics are here by
the handful, thanks to Paul (letter on
page 7) and others. Next issues Reader
to Reader will have letters pertaining
to using Small-C.

JW Weaver provides some User Group
names and addresses, as well as re-
questing your help in finding recent
information on many items from his
own collection of computers.

Jay finally fulfilis his promise of ex-
plaining how he made a system per-
form non-stop testing even after the
power goes off. Intended for PC based
systems using 4DOS, Jay shows how
he did it and give help in trying it on
Z-Systems.

Herb Johnson starts explaining BIOS
programming by covering how disk
drives work and what the BIOS soft-
ware must do to get data to or from
the drive. This is a must read for first
time hackers!

Rick Rodman comments on code qual-
ity and especially C compiler output.
This is part of Rick’s answer to TCJ
choosing a standard language for our
articles. Rick's and other Small C let-

ters will be the focus of next times
Reader to Reader column.

Chuck Stafford helps you keep those
Kaypro’s running by using clone power
supplies. Sharpen up those hardware
skills with this simple and easy to do
project.

The long awaited second part of
Tilmann Reh’s IDE interface article is
now here. In this part Tilmann ex-
plains the interface standard and starts
talking about IDE registers. His next
part will focus on the programming
aspect, so pay attention and get these
“‘Basics’ under your belt.

Terry Hazen completes his SCSI
EPROM programmer article, with
samples of the software. You will see
Just how simple it can be done as you
read this final (I hope not final from
Terry) article.

Operating Systems part II is here with
a review of 6809 operating systems.
Flex, OS-9, and SK*DOS are reviewed
as well as listing some vendors who
still have 6809 products to sell. Since
SK*DOS is the only actively supported
operating system for 6809, I have
added a listing of programs that can
run on the 68K version. You will be
surprised at just how many programs
are available!

Brad Rodriguez provides part 11 of his
multiprocessing article. He asks you
to comment on your interest in buying
bare boards for a ‘*Scroungemaster
I, all coverage starting on page 40.

Frank Sergeant comments and re-
sponds to your letters about his **Remi-

niscing and Musings’” in issue #62. 1
think that Frank’s comments on mak-
ing boards, prompted the folks at
Techniks to start advertising. Check-
out their market place ad on the inside
back cover for *‘PCB’s in Minutes.”

Pulling the last page as usual is my
Computer Corner. A bit short due to
so many good articles this time, but I
thank those who sent me ZX81 sche-
matics. You will find out I even got
one in German. [prove that simple
systems can be very popular and even
fun to use...well at least fun to write
about.

Please note that issues 20 to 25 are
now available as Volume 3. There
still remain some single issues, but
their number is pretty low. Issue num-
ber 25 is available, but again in lim-
ited quantity. | have already made a
Volume 4, Issues 26 to 31, but we
have plenty of those issues still left.

Issue #63 is big and full of interesting
reading. So if you don’t find anything
of mterest, ‘it only means that you
haven’t written to TCJ yourself. This
magazine is based on your input and
comments. So Send those letters and
comments to:

The Computer Journal

P.O. Box 535

Lincoln, CA 95648-0535
or

B Kibler@GEnis.com

B Kibler on GEnie
Compuserve as 71563,2243

The Computer Journal / #63

READER to READER

Letters to the Editor

All Readers
MINI

Articles

Dear Bill,
1 subscribe to Computer Journal
Can you help? This may sound stupid,
and it is. There is NO Library over here,
(Not even the British Library) who has
more than the odd issue of:-
Microsystems
Interface Age
etc.
When reading through the back issues
which you sent I come across references
to articles in these two. I am stuck! I
cannot read them.

1 know copyright and all that, but if the
publishers have ceased there is a real
problem.

Is there any chance that you have, and
can copy and send to me for my private
study and research (I think that voids
copyright problems):- (from TCJ No 49
p28). Microsystems Vol 4 No 9 Sept
1983 p 86 onward; 10 Oct, p 114; Vol 5,
1 Jan 1984, p 120. Three part article
“‘Relocating assemblers and linkage
editors”’. Micro/Systems J1 Vol 1 No 3
July/Aug 1985 p26. ‘‘Structured Pro-
gramming with M80°’". If you cannot,
could you pass request on to the author
(I assume HE must have a copy!)

Similarly:-

INTERFACE AGE Vo12 Oct, Nov, Dec
1976, by R Edelson ‘‘Super Chip
FD1771”. Even, if that is no route, do
you know any library who you could get
copies from and then charge me (with
postage and your costs!!).

I know it is a pain in the **, but I was
barn in the sticks...and have to try to
cope. On the longer view:- Can you in-
sert a request for back issues of these
magazines: Interface Age
Microsystems

The Computer Journal / #63

Micro/systems J1

withmy address? I would purchase, and
then donate to our national reference
Library.

Thanks very much for the insert re
ADM3A and 5 circuits. No replies at
all. Might as well junk them, in the
circumstances. I expect everyone thought
“‘someone else will write, so I won’t
bother”’. People are humans, after all!

Yours truly

John Butler

16, Uphill Drive

London, NW9 0BU, United Kingdom

Gee John, England sounds worse off
than I thought, Hopefully some of our
other English readers will see this and
help you out. If not let me know (a post
cardwill do) and I will try and find those
issues for you.

I must admit that yours is a typical prob-
lem. I have been after my writers to be
more explicit about their references for
people in your situation. You are right
that copying magazines for your own
use is OK, and If I happen to have the
issues you need (which I doubt) I will
gladly copy them for you. What you need
however is someone or group in En-
gland to act as a clearing house of infor-
mation. We have many old club/groups
in the U.S. that have retained their old
magazines for purposes like yours.
Maybe there are some in your area and
you just don’t know it?

One of TCJ’s problems has been the
lack of good representation of Euro-
pean problems and solutions. I am try-
ing to find a writer who wants to com-
ment on what is happening over there.

Might you be interested? Should you
find a person while getting help on your
back issues, that is fairly close to the
going on's over there, please send them
our way. Hope you get what you need,
soon. Thanks again. Bill Kibler.

Dear Bill;

I ran a cursory count of the availability
of earlier-released Intel-based comput-
ers offered for sale in the August Com-
puter Shopper: [counted four ads for
‘286 machines and one for a second
hand ’88. Ads for ‘386s were also rela-
tively few, compared to numbers of ‘486s
offered.

Shouldn’t you be considering adding the
early *86 varieties to your stable of *‘Clas-
sic’” one-lung Studebakers for which you
publish tips on hacking buggy-whip
holders? Or restrict yourself strictly and
““officially’’ to 4 and 8 bit computers, of
course dropping the Apple][-gs?

Over the last few years, as a PET and
Sinclair graduate currently running a
‘386, I ‘ve been amused by and enjoyed
your fanzine, though I've never imple-
mented any of the code or hardware
hacks. However, I recently discovered
the prozine *‘PC Techniques’’, and have
found more usable code hacks in one
issue than in years of your magazine.
Granted, they still don’t tell me about
hardware hacks that require soldering
my ALR ‘386 motherboard, but even
paranoid Steve C. seems leary of that
level of sophistication.

The real purpose of this note is to tell
you that I’m going to let my subscription
expire with issue #65, so don’t waste
your limited money and time importun-
ing me for a renewal. So long, it’s been

amusing, but even us 70-year olds have
to grow up sometime.

Sincerely yours,
Dave English

Well Dave, you don 't happen to actually
have a ‘‘one-lung Studebaker’’ do you?
I know some auto collectors who would
" pay many times the cost of a new car for
one! The more time that goes by the
more it seems like the computer industry
is just like the car industry.

I suppose one of the reasons they are
getting more similar is the same market-
ing plan. That plan is based on obsolet-
ing perfectly good items in favor of the
latest and greatest. Along with that is
convincing the buyer that you would be
crazy to drive one of those! Well like any
industry there are plenty of people who
like to know what actually is happening
under the “‘hood’’. TCJ has always writ-
ten for those wanting to know what hap-
pens inside.

Since the modern PC has nothing inside
that the average person could under-
stand, TCJ has little reason to write
about them. At some point in the future,
1 am sure we will occasionally give some
space to articles about PC'’s. The fact is,
I have an original IBM PC (256K)
motherboard that would qualify for be-
ing a true collectible item (and is be-
coming more valuable daily).

1love your comment about Steve C. stay-
ing away from PC'’s, it proves my point,
nobody with any real hardware knowl-
edge wants anything to do with ‘“‘that
level of sophistication.”’ Although I am
sure many of our readers would liken
PC s to Ramblers and Mercedes (the PC
being like the Rambler))

My hopes over the next few years is for
TCJ to pickup about the same percent-
age of readers as there are people who
collect old fashioned cars. Out of the
millions of people who drive, I guess
that one percent are interested in col-
lectible cars. If one percent of computer
users are interested in collecting older
computers, then TCJ could have as many
as 10 or 30 thousand readers in the
Suture!

So Dave, sorry to see you go, but then
you know where to find us when you get
tired of those new fandangled PC'’s. Bill.

Dear Bill;

Please find enclosed my check for $57.34
to cover the cost of completing my TCJ
library all the way back to issue #1.

My issue #62 is missing (1 1IxI7 sheet)
pages 7,8,45,& 46 . Please send the
missing sheet.

In Reader to Reader #62. regarding James
M. Harper and the Royal alpha Tronic.
I think that I have some answers.

1) For DRI manuals see Elliam Associ-
ates advertisement on back cover. I have
one of those. They are NEW and as
complete as any that DRI printed. The
HAYDEN book titled *‘CP/M RE-
VEALED’’ by Jack D. Dennon, ISBN 0-
8104-5204-9 is very good. It also in-
cludes the use of MOVCPM.

2) The command line parameter that
follows MOVCPM must be a decimal
whole number representing the top of
memory in Kbytes. On one system that
I have, the parameter must be an even
number but on the XEROX it can be
an odd number like 59. The first line is
a BOOT screen print, The second line
is the typed in MOVCPM command line.
The 3rd, 4th, & 5th line are written to
the screen by the running MOVCPM
program.

Xerox 60k CP/M vers 2.2¢ #2-294 EC3001096
AMOVCPM 59

Constructing Xerox 59k CP/M vers 2.2

Ready for ““SYSGEN"’ or

““SAVE 34 CPM59.8YS”

A)

The XEROX does a ROM load into RAM
memory FOOOh-FFFFh of a package
called BOS ‘‘basic operating system’’.
This BOS serves as a monitor with com-
mands that let you read a particular disk
sector, etc. The L command loads (boots)
from any disk drive (default A) and the
BOS stays put, then becomes a 4K BIG
BIOS. Many systems use F800h-FFFFh
for a 2K BIG BIOS. The BIOS from the

system tracks is small, the standard is
the last 7 sectors of track 1, plus 280h of
RAM as a scratch pad. For some func-
tions it simply is a jump vector to big
bios. Even though this is a 64K system,
for MOVCPM it is a 60K system. The
top of memory is the first word address
of BIG BIOS. This makes a very fast
boot.

On the CCS (California Computer Sys-
tems) S-100 system, on coldstart, the
CCP auto loads the BIG BIOS from a
named RLOCBIOS.COM file on the boot
disk. RLOCBIOS.COM is a combina-
tion of a RELOADER and a EOOh (3.5K)
BIG BIOS which loads at 100h like any
X.COM file, then relocates the bios por-
tion at F200-FFFFh overlaying the
BOOT BIOS. Here top of memory (end
of BDOS + 600h) is 62K (F200h + 600h
= F800h). CCS modified MOVCPM so
that the MOVCPM command line pa-
rameter is 64. The CCS manual says
that all the systern addresses are the
same as if an unmodified MOVCPM
were set to 62k. This MOVCPM carries
a double copyright notice, CCS & DRI
both. Here an odd number like 57 will
give an error notice. By comparison, this
is a slow boot.

A horrible MOVCPM error, undocu-
mented by DRI, comes when you copy
MOVCPM from the wrong distribution
disk, a CCS disk on the XEROX, an
example follows. MOVCPM is loaded
and starts running, as expected, it writes
line 2, & 3 to the screen then it hangs at
the end of the line where I put the aster-
isk. T have 2 CCS distribution disks,
with different serial numbers. This even
happens on the CCS computer when I
cross those 2 CCS disks.

A)G:MOVCPM 56
CONSTRUCTING 56k CP/M vers 2.2
SYNCHRONIZATION ERROR*

The software reset CTRL-ESC does not
work, it takes the hardware reset button
in back of the monitor to get back to
running. The RUNNING OPERATING
SYSTEM and MOVCPM must come
from the same distribution disk. This
MOVCPM & OPERATING SYSTEM
cross serialization is documented in the
book ‘““INSIDE CP/M’ by David E.

The Computer Journal / #63

Cortesi ISBN 0-03-059558-4 page 268.
The MOVCPM COMMAND:
SERIAL NUMBER CHECKSco..c.

MOVCPM & SYSGEN are real MIS-
NOMERS. SYSGEN does not generate
anything, it simply reads the system
tracks and writes to the sysgen area of
memory and visa versa. Likewise
- MOVCPM generates a fresh copy of the
system (Boot loader, CCP, BDOS, &
BIOS) and writes it to the sysgen area of
memory, with all addresses co-ordinated
to the so called top of memory that you
type in on the MOVCPM command line.

In the book ZCPR3 THE MANUAL by
Richard Conn ISBN 0-918432-59-6 the
sysgen arca of memory is shown as start-
ing at 1100 not the usual 900h, and he
cautions BEWARE, all systems are not
the same! If this book is not available,
this same ZCPR3 installation informa-
tion is shown on the public domain disks
SIG/M 184-192.

The CCS manuals also describe non stan-
dard system disks, those where the sys-
tem tracks hold big bios. This can be
done on some single density formats and
all double density formats. But it takes
some some special work like writing the
high byte rounded up of the bios last
load address into 929 in the boot loader
- program. The CCS has 12 different for-
mats, while the XEROX

has only 4. There is some more to it also,
but on the XEROX there is no such
information that I can find.

Do you have any information on where
if anywhere that I can find XEROX 16/
8 support.???

Sincerely yours,
Robert L. Edgecombe

Thanks for all the good information, Bob.
I had forgotten to mention the serial
number information. However I found
the locations inside the programs and
have just zeroed my serial numbers out.
That way I can solve the *‘Synchroniza-
tion’’ problem and can just forget about
it for good.

If you want to find the serial number,
Jjust do some file compares between your

The Computer Journal / #63

two different SYSGEN and MOVCPM
programs and they should pop out. If
readers are really interested, I am sure
I can find the approximate locations in
DOS and MOVCPM. I remember it be-
ing near the end of the DOS program
portion.

Using a RLOCBIOS is also a good way
to overlay a changed BIOS to see if all
your improvements are going to work.
That way you know the system is up and
running, and then get to test just that
new part. Also beware that some sys-
tems, add or subtract from the value
given to MOVCPM. I can’t remember
for sure which system, but one of mine,
changes the 64K value to 62K (I believe
the CCS when using RLOCBIOS does it)
to make up for the extra large BIOS.

The variation comes again from what
Bob indicated, with so many different
possible disk formats, the vendor had
plenty of freedom to implement how the
system went together. You need to re-
member that many vendors had the com-
plete source code to many of the utilities
and even all of CP/M. That means they
could make their system even more of a
one of a kind monster.

Unfornately Bob, I have little informa-
tion on the Xerox 8/16. My schematics
contain little help fo. you. Possibly some
readers will send us some good informa-
tion, just like your help with MOVCPM.
Thanks again! Bill Kibler.

Dear Mr. Kibler:

Where do I begin? I suppose that first,
1should thank you, the past (and future!)
editors and all the contributors to 7CJ
for making one of the few remaining
computer-oriented magazines that’s rel-
evant to me. I read each issue vora-
ciously from cover-to-cover within a few
hours of receiving it and keep them handy
for reference because it usually turns out
that I'm involved in something that was
discussed in a recent issue!

I certainly want that sort of thing to
continue, so I've enclosed a check in the
amount of a two-year subscription which
[beleive your records should show will
continue beginning with issue #64. 1
also wish to purchase a number of back

issues which I have listed separately.

At this point, I'd like to tell you a little
(a lot?) about myself as it relates to our
journal,

I would guess that at 26 I'm likely to be
one of your (if not the) youngest
subscriber(s). I've been enthusiasically
using Apple-hosted CP/M and Z-System
computers ever since I encountered the
PCPI Appli-Card in 1984 and then truly
discovered it and CP/M in the summer
of 1987. When I started back to school
inthe fall of 1988, I soon discovered that
I wanted my trusty Franklin ACE 1000
and PCPI AppliCard with me. I wrote
all my papers and reports with it and
soon purchased a modem and started
using the campus computers from my
apartment. I was sold on these things!

I was concerned that I was depriving my
younger brother of a computer at home
by having it at school, so in the summer
of 1989, I purchased an extended key-
board Apple //e, a pair of Apple UniDisk
3.5 disk drives, a monochrome compos-
ite monitor, and an Epson LQ5 10 printer.
I moved the AppliCard over to my new
machine and took off! 1added a Sorrento
Valley Associates ZVX4 8" disk con-
troller in 1991 and quickly hacked ca-
bling for attaching a pair of TEAC FD353-
GFR high-density 5.25" disk drives to it.
[replaced my Shugart SA801s with a
pair of SA860s so that I could go for
double-sided disks. (I gave the 801s to
a fellow member of our remaining CP/
M-Houston User’s Group.)

All the while, I had been keeping'tabs on
(and drooling over) a new Z-System
processor card for Apple][computers
called the CardZ180. I entered corre-
spondence with one of the people behind
it and, after a two-year wait, finally re-
ceived one. It took another 5 months
before 1 got working system software
(original disks were corrupt), but on 13
May 1992, my CardZ180 finally came
on line and I have been extremely pleased
with it. I purchased my first hard disk
in August of 1992 and am quite satisfied
with it.

Along the way, | acquired an Epson QX-
10 with 10MB hard disk both of which

died and then were resurrected with e-
mail help of (contributors) Wayne Sung
and Jay Sage, respectively. I picked up
a oouple of extra AppliCards, so the
Franklin (which my parents still have)
can continue as a Z-System machine. I
also became enamored of the Amiga
computers and recently purchased a used
Amiga 500 and have proceeded to up-
" grade it with more RAM, the common
hacks, hard disks, and System 2.1 soft-
ware.

As for what I use my machines for, I use
my CardZ180-equipped Apple //e for
everything that I do. Right now that
mostly consists of writing papers and
reports for school and telecommunica-
tion (mostly internet news, mail, and
other interactive activities). Right now
the Amiga is, alas, mostly an entertain-
ment machine, but all three of my com-
puters are the object of my fascination
and personal study. My plans for the
Amiga involve using TeX and doing
CAD work.

Asastill fledgling hacker, I finally wrote
my ‘Opus 1’ around July 0of 1992. It’san
extension for the CardZ180 CBIOS--an
alternate set of CONIN, CONOUT, and
CONST routines that use the CardZ180
(HD64180) ASCI1 port for the console
rather than the standard Apple console
. driver. The .COM file determines the
type of system it’s running in (full
NZCOM, static ZCPR3 or plain ZCPR1
and saves the old CBIOS jump addresses
and replaces them with the run-time
addresses of the new routines which it
places in a reserved area at the top of
memory. This finally solved the prob-
lem of character loss in telecommunica-
tions that all Apple-hosted CP/M sys-
tems have, although the CardZ180
system’s threshhold is around 4800bps
rather than 1200bps for other systems
(Appli-Card included). 1 packaged it up
and uploaded it to the BBS that supports
the CardZ180.

I was extremely pleased when my exter-

nal terminal package caught the atten--

tion of the author of the CardZ180’s
system software. He very graciously
offered me the source code for the whole
shooting match and I quite naturally

accepted. 1 recently acquired exactly the
right combination of hardware to kluge
together a hard-disk to send him so that
he can send the huge volume of code (in
6502, ‘c02, ‘802, ‘c816, Z80, HD64180
assembly, PASCAL-MT+, and Turbo
Modula-2 Z80) to me. I received it back
in April 1993 and after examining the
code a bit, implemented some enhanced
functions in the standard Apple console
driver which had been missing since the
days of the PCPI Appli-Card!

Projects I’ve undertaken include a sec-
ond degree. I completed a degree in
Agricultural Engineering from Texas A
& M University in December of 1992
and now have turned around and am
studying Computer Engineering. I'm
enjoying it immensely, but recently I
taught myself more in two hours alone
with my Z80 databook and my Apple //
¢ Technical Reference Manual than I've
learned in the first 8 weeks of my intro-
ductory digital design class! I suppose I
should try to attach myself to the work of
a professer where I can put my interests
to use. I discovered that I'm probably
searching for a mentor and the school’s
probably the best place to find one.

What I taught myself was all about
DRAM and the Z80. At this point, I
would like to ask you and all readers for
a recommendation for sources of fast
(100ns or less) DRAM that will operate
with 128-cycle refresh for high-speed
Z80 applications. My project is to accel-
erate my remaining PCPI AppliCards
and I need the right DRAM for it to
work. The Applicard circuit design is
virtually bulletproof and has been run as
fast as 12MHz. I plan to take my boards
as high as I can get them to go! True,
the systems will then begin to become I/
O bound, but as long as there’s no /O to
be done, they will fly.

I hope eventually to build a couple of the
projects from the Ciarcia’s Circuit Cel-
lar books with the serial EPROM pro-
grammer (vol. 6) being among the first
(if not THE first). I feel I have more to
learn before I tackle one of those though.

Another thing 1 hope to do is get in
touch with Hal Bower, ¢t al. and work
on implementing the Banked/Portable

BIOS on my CardZ180. The current
system already reserves an extra 64K
bank of the 64180°s IMB address space
for system expansions such as the B/P
BIOS and I'd like to see if I can get it up
on the CardZ180.

I would like to express my appreciation
for David Goodenough’s article on Z80
interrupts in issue #54. I soon adapted
his interrupt-driven serial /O and queue
code to my copies of QTERM on my
CardZ180. This finally allowed high-
speed terminal operations with the
CZ180’s Apple console driver. 1adapted
just the queue portion for Appli-Card
and QX-10 QTERM overlays and it
operates quite nicely for regular polled I/
O (it does help a bit). I had also recently
studied queues in my data structures class
so re-reading the article and implement-
ing the code added greatly to my under-
standing.

1 was also quite excited when I turned to
the new Centerfold in issue #59. 1saw
things in the schematic that I had re-
cently been tested over in my digital
design class. I couldn’t help but smile
broadly and think, ‘‘I know what that is!
I can even name the chip!”” I looked at
the parts list and confirmed that I was
absotutely correct. I showed my copy of
issue #359 to my professor and related
what 1 experienced. He seemed quite
pleased that I had made the class mate-
rial “‘real’’ for myself, but offered no
comment on 7CJ itself. Perhaps1 should
dare to lend him one of mine to peruse.
Gosh, this letter has gotten long! Per-
haps it might make a mini article! Se-
riously, though, I don’t see much in the
way of Apple][-hosted CP/M and Z-
System machines represented here or in
The Z-Letter and if | can make myself sit
down and write things down, I’d be more
than happy to supply an article dealing
with CP/M and Z-System running on
co-processor cards in Apple }[machines.
Thank you again for such a fantastic
publication!

Yours truly,

John D. Baker
jdb8042(@blkbox.com
jdbaker@taronga.com
jdb8042@tamuts.tamu.edu

The Computer Journal / #63

Thanks for the 8 inch disk and your
letter that was on it. Had no problem
moving it off and accross several sys-
tems after I found the correct RS232
connector on the back of my S-100 sys-
tem. Forgot had two dead sockets, but
will leave the cable on the right one
from now on, so transferring will be
easier next time.

I have gotten several requests for apple
/e articles, but as yet no offers from any
writers. Your Epson QX-10 however is a
real hot item. Seems everyone loves them,
but can’'t find any support. I would love
to print information about the QX-10 or
Appli-Cards.

You are right in thinking that you have
enough for a mim article. Your letter
mentioned many items which our read-
ers are interested in, but you didn’'t give
enough details. I wonder if these card
are still for sale, who has them, what
comes with them, what restricitons/op-
tions apply? How did you install the Z-
System, and what problems did you en-
counter and our writers helped you solve.

Quite often our writers help readers solve
problems, but the problem and solutions
never seem to make it to print. I have
asked our writers to comment in their
columns, and they have started doing
that, but readers need to send me mini-
articles as well. The reason being, our
writers often do not know what the final
outcome was and therefore are not sure
the problem was solved. So it actually
comes down to the reader sending me a
letter/mini-article after the problem is
solved as the only way we can get the
information into print. You must remem-
ber, you are the only one who really has
all the facts!

So that is it John, it is up to you to tell
us what the problems were, and how our
writers helped you find your way out of
the darkness. I might also say, that if
you drop me your professor’s name, 1’l]
send him/her a few copies for free. I still
think TCJ is the best publication for
college students and professors! Thanks
again for the renewal and letter. Bill.

The Computer Journal / #63

Dear Bill

I'm enclosing my check for another 12
issues of TCJ, having been a happy (if
uncommunicative) subscriber since is-
sue #1.

Does anyone out there remember (maybe
is still using) the IMP-16 computer Hal
Chamberlin designed back in the 70s,
using the National Semiconductor chip
set? I believe it was the first 16-bit com-
puter for the amateur. I had a lot of fun
wire wrapping his boards, and learned a
lot (mostly now forgotten) on how the
circuitry worked. Hal had a good way of
explaining the details of such things in
a lucid and entertaining fashion. Unfor-
tunately, he went on to other things be-
fore completing his series of articles in
“The Computer Amateur’’, later re-
printed and continued in National’s **Bit
Bucket’’, and I never did get my IMP-16
up and running,

I had better luck with the Slicer com-
puter, using the Intel 80186, which served
me well (ah, the thrill of powering up
your handiwork and seeing something
appear on the screen!). Running DOS
2.1 with Heath terminal, about all I could
run was MASM and Multiplan, though.
Again, I wonder if there is still interest
in this machine.

Norman Stanley.

Thanks for the renewal Norman, and the
interesting comments on the IMP-16. [
have heard of it, but never saw one. How
about some more details and explana-
tion of the “‘thrills’’ you got doing it?
WordStar will also run off a terminal in
DOS 2.1 if you use version 3.1 (did it
myself for awhile!). Thanks again for
being with us since #1! Bill.

Dear Mr. Kibler:

I just received my copy of issue 61 of The
Computer Journal, and saw your response
to Ken about the availability of schemat-
ics for the venerable Timex Sinclair ZX-
81. I am going to go one step farther,
and am sending you a copy of the sche-
matic diagrams that I have for both the

ZX-81 and its predecessor, the Sinclair
ZX-80.

Most interestingly, last week I was logged
into the White Sands Public Domain
software pool, SIMTEL20, and in the
messy-dos directory under emulators and
I find the index has an emulator for
these machines. Maybe someone will
download this emulator and give us a
report on it. I can’t because it will not
run under either of my CP/M systems.

I also have a full set of diagrams for the
Intertec Compustar VPU-30 system that
1 would be willing to share with TCJ for
others if there is interest. However, those
schematics must be returned to me, for [
am using them to support my two Cstar
systems. The beauty of them was the use
of a hard drive (boat anchor size) that
would be the home of software for the
remote systems. Each system (255 pos-
sible) could access the hard drive and
read/write to the main disk partition (D:)
while being assigned a small hard disk
partition (C:) that was not accessible to
any other system on the network. I have
a 10 meg hard drive for these systems,
and supposedly, Intertec came out with

" a 96 meg drive.

Keep up the good work with The Com-
puter Journal.

Sincerely, Paul V. Pullen.

Thanks Paul for the schematics and do
read my corner for how I put my foot in
it. T

1 have the SIMTEL-20 CDROM and also
Jfound all the emulators, quite a collec-
tion. Guess I need some people to review
them all! I also have an Intertec system,
a OD, has two Z80's. Very fast and well
designed. I have heard about their multi-
user system and think they were ahead
of their times. Oh well, lots of great
systems were passed over for the rather
poor PC hardware design.

Thanks again! Bill Kibler.

Mail to:
The Computer Journal
P.O. Box 535
Lincoln, CA 95648-0535, U.S.A.

stre SUPPORT GROUPS FOR THE CLASSICS

By JW Weaver

Kind of fell behind, what with rebuild-
‘ing my main transport, and problems
with my BBS system. But, now I need to
" get with the task at hand, writing this
column.

Connected with a BBS located in Salt
Lake City, Utah. The BBS is associated
with a user group supporting the Coleco
ADAM. Name of the group is Adam-
Link User’s Group, with a newsletter
ADAM Informant. Inquires should be
posted on the BBS. SLC ADAM-Link
BBS, (801) 484-5114, speeds 300/1200/
2400 with 8N1 or 7E1.

A second user’s group, is the San Diego
0S-9 Users Group. Contact person is
Warren Hrach, (619) 221-8246 - voice,
associated BBS is Ocean Beach BBS,
(619) 2244878 8N1 9600.

. The fellow who sent the info on the OS-
9 group, Shaun C. Marolf, also runs a
BBS, Eight Bit Heaven, dealing with the
Classics. A friendly BBS, handling sev-
eral 8 bit systems.

Possessing scveral older systems, each
with a different approach to the design
of hardware, I would be interested in
hearing any history on these systems. So
if you have any knowledge, personal
involvement in the development of the
organizations or systems, Please share
with us.

Some of the systems I have are, (with
what information I already have, such as
last listed address or company name);

ADAM - Coleco Industries, Inc.,
Amsterdam, New York 12010

Altair 8800 - MITS Inc. 6328 Linn, N.E,,
POBox 8636, Albuquerque, N.M. 87108.

8080 processor with 4 kilobytes of
memory, 8" floppy drive

Attache - Otrona Corp. 4755 Walnut,
Boulder CO. 80301. Z80 with 2 half
height 5 1/4 floppy drives, built in 5" crt

ECS 4500 - ECS Microsystems, Inc. Z80
with 2 full height 5 1/4 floppy drives,
built in 9" crt

Focvs XVI - Fairchild Camera and In-
strument Corporation. 16 bit descrete
logic processor with programmable mi-
crocode

Hyperion - Dynalogic Info-Tech Corpo-
ration, Ottawa, Canada. 8088 with 2 half
height 5 1/4 floppy drives, built in 5" crt

Micro Decision - Morrow Designs. Z80
with 2 two/thirds height floppy drives

Osborne I - Osborne Computer Corpora-
tion, Hayard, CA. Z80 with 2 half height
drives, built in 4" crt

Super ELF - Quest Electronics, POBox
4430, Santa Clara, CA 95054

RCA 1802 processor with 256 bytes on
static ram

I would also like to obtain any technical
documents relating to these systems and
especially any support groups or news-
letters. Remember that some of these
organizations are no longer in business,
but often they sell the rights to other
companies or service centers. IMSAI’s
were continued to be made and sup-
ported for scveral years after IMSAI went
under by Fischer, Fischer and Company,
(itself closed in 1982, I think).

I am planning to research as much of

these systems and manufacturers as time
will allow, and report all information,
assuming that you the readers are inter-
ested. So let me know if this area would
be of interest, and those of you that have
knowledge, please send me what you
have or know.

Mike Michaels of Canton, IL, supplied
this list of firms supporting TRS80's
(his letter was in #62). Anitck, PO Box
361136, Melbourne, FL 32936, (407)259-
9397. They have memory expansions to
8 meg and speed up kits. Computer News
80, PO Box 680, Casper, WY 82602,
(307)265-6483. A newsletter by Stan
Slater and Ron Gatlin. Micro-Labs, 7309
Campbell Rd., Dallas, TX 75248
(214)702-8654, Hi-rez add on board by
Ted Carter. Misosys, PO Box 239, Ster-
ling, VA 20167 (703)450-4181. Hard
drive and SCSI adaptors and software by
Roy Soltoff. TRSTimes, 5721 Topanga
Canyon Blvd. #4, Woodland Hills, CA
91367 (818)716-7154. A newsletter by
Lance Wolstrup. (7his list has not been
verified yet. BDK)

On a personal note, My BBS contains a
few of the Public Domain programs for
the Kaypro systems. Open to the public,
but, the first time you logon you will
NOT have access to these files. Usually,
by the following Saturday, your security
will be upgraded for accessing all the
Kaypro files.

Until next time, keep hackin’.
Jw.

Write to:

TCJ Support Groups
Drawer 180
Volcano, CA 95689
BBS: (916) 427-9038
300/1200/2400 8N1

The Computer Journal / #63

The Z-System Corner
By Jay Sage

Regular Feature
ZCPR Support

Failsafe Scripts

Techniques for Running Unattended
Part 1: The Control Script

I have been promising for nearly a year
to tell you about the techniques I devel-
oped before the summer of 1992 to allow
my MS-DOS 486 computer to carry out
simulations of electronic circuits com-
pletely unattended while I was away on
travel for an entire month. In a series of
columns starting with this one 1 will
finally make good on that promise.

It is very important to my research
projects that useful work be accomplished
during times when I am away. This past
summer, as I mentioned in my last col-
umn, I accomplished that aim by setting
up an email account in Israel that per-
mitted me to interact easily and frequently
with my colleagues back at the labora-
tory. This year my research was in a
. circuit-testing phase, with a graduate
student hard at work, so the email ap-
proach was quite suitable. Last year it
was in an analytical phase that required
a large number of time-consuming elec-
tronic circuit simulations to determine
the operating margins for a new type of
circuit I had invented.

There were two principal issues I had to
address with the control programs I de-
veloped. First, in order to find the lim-
iting values for a particular circuit pa-
rameter, such as the clock voltage, it was
necessary not only to sweep the value for
that parameter but also to determine
automatically whether the circuit had
operated successfully or had failed at the
last value simulated. The parameter
values could then be adjusted appropri-
ately until the limiting values had been
determined to the desired accuracy. A
suite of PMATE editor macros handled

The Computer Journal / #63

this task. They will be the subject of a
future column.

The second task was to make sure that a
long sequence of computational tasks
would be carried out even if there were
power failures or other situations that
required rebooting the computer. Cer-
tainly, I could not count on everything
running perfectly smoothly for an entire
month, The control programs that
handled this problem will be the subject
of this column,

One final introductory comment. What
I am describing here operates on an MS-
DOS computer using the 4DOS com-
mand processor replacement, which is
very similar to the ZCPR3 command
processor replacement under CP/M.
Although I will not discuss in any detail
the application of the same techniques
under Z-System, I'm quite sure that they
could be implemented if the need arose.

The AUTOEXEC.BAT File

When MS-DOS boots up, it runs a batch
file with the name AUTOEXEC BAT.
This is where we have to start. Rather
than add the special commands to
AUTOEXEC.BAT itself, I simply added
a line at the end of the standard
AUTOEXEC BAT file to invoke the
power-failure-survival script, which I call
FAILSAFE.BTM. Although a start-up
command script is not a mandatory fea-
ture of Z-System, it is quite easy to make
Z-System run a command or alias of the
user’s choice when the system boots.

Although we have just begun, it is al-
ready time for an aside. This column
will necessarily serve in part as an intro-
ductory tutorial on 4DOS, because I make
use of many of its special features. One

of them is BTM files. These are the
same as BAT files in terms of what they
accomplish; the difference is that BTM
(BaTch Memory) files run entirely from
memory. When an MS-DOS BAT script
is invoked, the first command is run.
Then COMMAND.COM goes back to
the file on disk and reads the second
line, and then the third line, and so on.
This procedure can be slow and can
encounter problems if, for example, the
BAT file is removed from the system, as
it might be if it is run from a floppy.

With a BTM file the entire script is
loaded into memory from the start. This
allows it, with a slight penalty in memory
usage, to run much faster, However, one
does lose the ability, which is on rare
occasions very useful, to modify the BAT
file on the fly while the script is running,
4DOS supports both BAT and BTM files.
In fact, 4DOS allows the mode, disk-
based or memory-based, of either type of
file to be changed on the fly by the
LOADBTM command with the argu-
ments ON and OFF. I almost always use
BTM files because of the increased speed.

When I am not using the failsafe facility,
which, of course, is almost all the time,
I leave a very simple FAILSAFE BTM
file in the root directory. All it does is
display a message reminding me of its
name and presence and the need to
modify it to perform any desired failsafe
tasks. Listing 1 has an example. It also
illustrates a very nice 4DOS command
pair: TEXT and ENDTEXT. After a
TEXT command, all lines in the script
up to the ENDTEXT command are sim-
ply sent to the screen exactly as they
appear in the file, including leading
spaces. The same thing can be accom-
plished using ECHO commands, but that
approach is clumsier and has problems

with some characters (though 4DOS gets
around that by allowing strings to be
‘escaped’ -- deprived of any special
meaning -- by enclosing them with back-
ward single-quote characters).

The Linking FAILSAFE.BTM Script

When [want the computer to perform
some unattended tasks, [typically add
some commands at the beginning of the
dummy FAILSAFE.BTM command to
change to the subdirectory where the
work will be performed and then to in-
voke a full FAILSAFE.BTM script that
resides there. Thus the FAILSAFE.BTM
in the root directory serves as a link.

An example of the root FAILSAFE BTM
with these extra command lines is shown
in Listing 2. Note the use of the 4DOS
command CDD. This is like the DOS
command CD except that it changes the
drive as well as the subdirectory. A
similar command, PUSHD, not only
changes to the specified drive and direc-
tory but also pushes the name of the
current directory onto a directory stack.
The command POPD will take one back
to the directory one was in before the last
PUSHD was issued. The stack is fairly
deep (255 characters), allowing one to
backstep through several directory
changes.

Note also the placement of an asterisk
before the CDD command. 4DOS sup-
ports aliases just as Z-System does. One
difference, however, is that 4DOS pro-
cesses aliascs before it processes real
commands with the same name, and it is
very common to define aliases to invoke
built-in commands with certain options
automatically included or with some
other support commands. For example,
I want to be able to enter *‘CD’’ and
have CDD performed, so I have an alias
named CD that invokes CDD. Some-
times, especially in scripts and even more
especially in scripts that we distribute to
others, we want to make sure that the
real command runs, not an alias. Put-
ting an asterisk in front of the command
name does just that.

The Working FAILSAFE.BTM Script

Well, enough beating around the bush.

10

Let's get down to the script that really
does the work! Listing 3 shows a gen-
eral-purposc FAILSAFE.BTM script that
would be put in the subdirectory in which
tasks are to be carried out.

Before we look at the command lines
themselves, I want to say a few things
about the general approach taken. The
script is designed to read commands from
a file called FAILSAFE.CMD. This
makes it very easy to sece what com-
mands are going to be performed and to
change those commands without modi-
fying the FAILSAFE.BTM script. The
environment variable FAILSAFE is used
to store the number of the line in
FAILSAFE.CMD to be processed next.

In order for the system to recover from
a power failure or other event that re-
quires rebooting, the entire environment
(that is, the names and values of all
environment variables) is saved in a file
(FAILSAFE.ENV) that can be used to
restore the environment after a reboot.
The details of how this works will be
covered shortly.

The Z-System, by the way, also supports
the use of environment variables, though
few people make use of this feature.
Because the symbol names and values
have to be stored in a disk file, rather
than in memory as in DOS, access to
them can be slow. Dreas Nielsen, a TCJ
contributor in times past, was respon-
sible for the most significant develop-
ment of techniques and programs for
using Z-System environment variables.
The classic tools Rick Conn provided for
working with them were SH, SHVAR,
and SHDEFINE. Dreas contributed FOR,
NEXT, PERFORM, and RESOLVE.
The first three of those are generally
distributed together in a package called
FOR-NXT3.LBR, though there is a
newer version of FOR distributed sepa-
rately.

Now let’s start working through the com-
mands in the functional
FAILSAFE BTM. The first thing we do
is make sure that there is a file
FAILSAFE.CMD with commands to be
performed. As we will see later, when
all commands have been completed, this
file is renamed to FAILCMDS.OLD to

stop any further processing (otherwise, a
reboot at this point would start the whole
sequence over again).

Next we determine whether this is an
initial invocation of the script or the
resumption of operation after a reboot.
We do this by looking for the file
FAILSAFE ENV. Any file of this name
is deleted when all FAILSAFE opera-
tions have been completed, but the user
should make sure that no such file is
present, perhaps from a deliberately
aborted run. when a new failsafe run is
to be started.

This part of the script illustrates the
powerful flow control processing that
4DOS has added to MS-DOS (of course,
this is nothing new to Z-System people).
The commands IFF, ELSE, ELSEIFF,
and ENDIFF allow nested conditional
processing of groups of commands. The
indentation I usc to make the script more
readable has no effect on the actual pro-
cessing.

In the present case, we test for the exist-
ence (or, more precisely, the absence) of
FAILSAFE.ENV. If it does not exist,
then this is the first time through the
script; otherwise it is a reinvocation fol-
lowing a system reboot. For each cdse
we perform a specific group of com-
mands. Incidentally, I use the NOT
option to reverse the existence test solely
to suit my sense of logic. 1 want the
commands for a first-time-though to
come first in the script.

If this is the first time through the script,
we initialize the environment variable
FAILSAFE 1o the value 0 and write out
the entire environment to the file
FAILSAFE.ENV by redirecting the out-
put of the SET command from the screen
to the file. This is how we save the
current state of the computation.

Note that we put an asterisk before the
SET commands to make sure that the
rcal 4DOS command runs and not an
alias. I (and many other 4DOS users)
have an alias called SET that paginates
the display of the listing of environment
variables by invoking the SET command

The Computer Journal / #63

with the /P option. We certainly don’t
want that to happen here!.

Besides those two essential actions, I
like to keep a log of what has happened.
When FAILSAFE first starts running, [
write a line to a file called
FAILSAFE.LOG that indicates that a
new FAILSAFE run started at a particu-
lar time. This is done by redirecting the
output of the ECHO command into a file
in append mode using the *>>"’ redi-
rection operator,

This command gives us a glimpse of a
very powerful capability that 4DOS pro-
vides. There are system data variables,
accessed like environment variables, that
can tell almost anything about the com-
puter system. Their names begin with
the underscore character. In this com-
mand line we see % DATE and
%_TIME, which return the date and time
stored in the system clock.

For those unfamiliar with MS-DOS,
command-line tokens and variables are
referenced using a leading ‘%’. Z-Sys-
tem uses ‘$’ for most parameters, but
shell variables, as in DOS, are refer-
enced using ‘%’. There are dozens of
other 4DOS system variables that allow
one to find out such things as the kind of
CPU chip and numerical coprocessor,
the current drive and subdirectory, the
position of the cursor on the screen and
the color scheme there, whether or not
Windows is running and which version,
the number of the current DESQview
window, and so on, and so on.

Now back to the script! If this is a
resumption of operation, the environ-
ment variables saved in the file
FAILSAFE.ENV are read back into the
environment using the /R (read) option
of the 4DOS SET command. Then a
line is written to the log file indicating
the time at which the script resumed
operation after a power failure or other
system reboot.

At this point we come to the main com-
mand processing loop. It functions as a
WHILE loop by testing for the termina-
tion condition at the beginning. Specifi-
cally, we check to see if there are any
more commands to perform in

The Computer Journal / #63

FAILSAFE.CMD. To do so we use a
tremendously powerful feature of 4DOS.
Besides the system variables we saw
carlier, there is an even more powerful
extension to the environment facility of
DOS: system functions. These are like
the system variables except that they take
arguments.

System function names begin with the
‘@’ character, and there are dozens of
them. They test, parse, and otherwise
manipulate strings and file names; com-
pute with dates and times; determine
how much disk space or memory of vari-
ous types is available; reveal the sizes,
time stamps, and attributes of files; read
information off the screen; and so on
and so on.

The first one we encounter here is
@LINES. It takes a single argument,
the name of a file, and returns the num-
ber of the last line in the file, where the
first line has the number O (that’s why
we initialized the variable FAILSAFE to
0 rather than 1). The test ‘‘%failsafe GT
%o@lines[failsafe.cmd]” compares the
next line number to be processed
(%failsafe) to the number of the last line
in the file FAILSAFE.CMD. As you
cansee, 4DOS can perform comparisons
other than just equality and inequality,
asin MS-DOS. The full set of relational
operators is available (GT, GE, LT, LE,
EQ, NE), for both string and numerical
comparisons.

If we have run out of command lines, we
delete the FAILSAFE.ENV file. We
then want to rename FAILSAFE.CMD
to FAILCMDS.OLD. Surprisingly to
me, the 4DOS rename commands (REN
or RENAME) do not have an option, as
we have in Z-System, to delete any ex-
isting file with the new name. Conse-
quently, we have to check explicitly for
the existence of FAILCMDS.OLD and
delete it, if necessary, before performing
the rename operation.

The final step is to add an entry to the
log file showing the time when the whole
operation was completed. A blank line
is also added by the “‘echo.”” command.
With the job finished, we issue the 4DOS
CANCEL command, which terminates
all batch file processing, no matter how

many levels deep we might be. (The
QUIT command, which exits only from
the current batch file, would probably
have been adequate here, but CANCEL
ensures that all batch processing will be
terminated.) We then complete the IFF
block with the ENDIFF command.

If the current command in the variable
FAILSAFE does not exceed the number
of lines in the FAILSAFE.CMD file,
then the commands following the IFF
block will be executed. We write a line
to the log file showing the time at which
the particular command line was started,
and we then run the next command.
How do we get the next command? We
use the 4DOS system function @LINE
(not to be confused with @LINES). It
takes two arguments, the file name and
the line number, and returns the speci-
fied line from the file.

After the command has been completed,
we advance the command counter by
using another 4DOS system function,
@EVAL. This function takes one string
argument, which is treated as an arith-
metic expression, and returns the value
of that expression. In this case the argu-
ment is ““‘%failsafe+1’’. The term
“%failsafe’’ gets replaced by the cur-
rent value of the environment variable
FAILSAFE. It is incremented by 1 by
@EVAL, and the result is assigned by
the SET command to the variable
FAILSAFE, replacing the original value.

The modified environment is written out
to the file FAILSAFE.ENV, replacing
the older version, and the script then
Jjumps back to the label LOOP. That’sit.

At this point I would like to make one
final observation about the precise way
in which this script allows for recovery
from a power failure or other mishap
that requires rebooting. Processing does
not begin at the exact point at which it
was interrupted. That would be impos-
sible to achieve purely in software. What
happens is that processing starts over
again at the beginning of the command
line that was being executed when the
problem occurred. It should be kept in
mind, therefore, that this technique will
not work if a partially completed com-

11

mand cannot simply be restarted from
the beginning.

The commands I ran under FAILSAFE
were all commands that could be rerun
at any time, with any current output re-
placing any output from previous execu-
tions of the command. A situation to
avoid is one in which required input files
are modified or deleted. The commands
should use input data that is left un-
changed and write output data to new
files, not to the input files.

Next time I will describe in more detail
how I set up my command lists and how
my commands were able to make intel-
ligent decisions about what to do next.

Closing Announcements

I often start my columns with some an-
nouncements that are not related to the
main topic. This time it seemed awk-
ward to put them there, so I have stuck
them on the end instead. There are two
things I want to mention. First, in my
column in issue 60 I referred to the news-
letter that Frank Gaude at Echelon had
distributed to his customers as ‘“The Z
Letter’”. Apparently no one, not even
Bill Kibler, noticed the mistake except
David McGlone. You see, David is the
real publisher of ‘“The Z Letter’’, which
is still very much alive. Frank’s news-
letter was called *“The Z-News’’. Sec-
ond, I would like to provide some Z-
Node update information. Lec Bradiey,
a stalwart of the Z community, has re-
tired as sysop of Z-Node #12 in Hart-
ford, Connecticut. I am happy to report,
however, that Eric Palm has taken over
its operation. The new phone number
(still in the Hartford outdial of PC-Pur-
suit) is 203-826-5047. 1t is currently
running on a Xerox 16/8 with a 10 meg
hard disk, but Eric hopes to upgrade to
a larger disk soon. /Editor: Jay just no-
tified me that Eric Palm returned Z-
node 12 to Lee Bradley, so it is back at
its old number.]

I'wish I could report the return to service
of the Drexel Hill Z-Node in Philadel-
phia. Mike Finn is taking it over from
Bob Dean, another stalwart of the Z
community, but there continue to be re-
lentless hardware problems. We all hope
it really will be back up soon.

12

Fotetetatetet ot bat bt ot ob ot otobetbeb et bt et bat et
Listing 1. A dummy FAILSAFE.BTM file for use when the computer is operated normally. All it does is
to display a message to the user.

@echo off

text
This is a dummy FAILSAFE.BTM file in the root directory.
To run commands in unattended mode, this file should be
modified to invoke a real failsafe batch file.

endtext

Fotartetotatotatatotatotatobatatat ottt ototatatatat

Listing 2. A modified FAILSAFE.BTM file that would be placed inthe root directory when unattended tasks
are to be performed. The additional commands at the beginning change to the appropriate subdirectory, issue
some initialization commands, and then invoke the main FAILSAFE.BTM script. In this example, we
change to the subdirectory TESTCKT where my circuit will be simulated. We also add to the command
search path the PSPICE directory where the circuit simulation program PSPICE is kept (ADDPATH is a
utility I picked up somewhere, though a somewhat complex 4DOS command could perform the same
function).

@echo off

*cdd c:\pspice'testckt

addpath c:\pspice

failsafe.btm

text
This is a dummy FAILSAFE.BTM file in the root directory.
To run commands in unattended mode, this file should be
modified to invoke a real failsafe batch file.

endtext

e e S S S T s 2 SO SRR eSS
Listing 3. The full FAILSAFE.BTM script that really does the work. See the text for a complete description
of how it operates.

@echo off

REM Quit if no commands to perform.
if not exist failsafe.cmd cancel

REM Determine whether this is an initial start or a restart and perform the appropriate actions.
iff not exist failsafe.env then

REM If first time, initialize FAILSAFE

*set failsafe=0

*set >failsafe.env

*echo %_date at %_time: Starting new FAILSAFE run.

>>failsafe.log
else
REM On restart, restore the environment
*set /r failsafe.env
*echo %_date at %_time: restarting after failure
>>failsafe.log
endiff
:loop
REM See if commands remain to be performed. If not, clean up and quit,

iff %failsafe GT %@lines[failsafe.cmd] then
*del failsafe.env
if exist failemds.old del /q failcmds.old
*ren failsafe.cmd failemds.old
*echo %_date at % _time: FAILSAFE run completed.
>>failsafe log
*echo. >>failsafe.log
cancel
endiff
REM Read the next command line from FAILSAFE.CMD and process it. Upon completion, advance
REM the pointer in variable FAILSAFE.
*echo % _date at %_time: running line %failsafe >>failsafe.log
%@line[failsafe.cmd,%failsafe]
*set failsafe=%(@eval{%failsafe+1]
*set >failsafe.env
*goto loop

The Computer Journal / #63

Dr. S-100

By Herb R. Johnson

Regular Feature

Iemesat

Copyright Herbert R. Johnson, Aug 1993.

Mail and Messages were all used up in
my last column. Write more often!

Reader’s comments in TCJ’s letter col-
umn suggest that articles about comput-
ers assumc they already know how a
computer works! Consequently, those
articles contain words and concepts that
are unfamiliar to a novice. More experi-
enced computer users may have prob-
lems with ‘‘hardware’’ articles, and even
programmers may not know the physics
and mechanics of the devices they regu-
larly program. Finally, some of us old-
timers have forgotten some of this stuff.

This month, I give a tutorial on diskette
drives that is good for anyone who owns
a computer built after 1978, which should
include most of the readership. I de-
scribe the physical nature of disks and
disk drives, a discussion of the smarts in
a diskette controller chip, and the opera-
tions of a disk drive at the BIOS (basic
input/output system) software level. I’ll
leave advanced operations, such as disk
directories and boot-up stuff, for another
column or another columnist, depend-
ing on reader response to this column.
But I will include some BIOS fragments
in 8080 code that closely follows the
methods in this article.

For my S-100 readers I have available a
BIOS for SSSD 8" and a number of SD
Systems diskette controllers (suitable for
8" and 5", single and double density).
Contact me for details.

Tutorial Topic: What is a disk drive?
When I considered writing about dis-

kette drive controllers, I decided to start
at the basics. The following is a pretty

The Computer Journal / #63

complete description of the technology
behind a disk drive. When you know the
fundamentals, diskette drive operations
make more sense. From this, BIOS (in-
put/output) software will also make more
sense. Before you continue to read this
article, I recommend you locate a loose
disk drive and a 5" or 8" floppy diskette
and keep them on hand as you read.

History

The first S-100 systems had no disk
drives, because floppy disks were a re-
cent invention of IBM and were expen-
sive, Gary Kildall had yet to develop his
CPM system and to start Digital Re-
search to market it. Programs were stored
in and read from paper tape, usually via
Teletype ASR-33 printing terminals.
Impatience and the inconvenience of a
write-once (non-erasable) medium, and
the availability of audio cassettes led to
a variety of tape cassette formats sup-
ported by Tarbell, IMSAI, Processor
Technology (Sol) and others. The mi-
crocomputer market was driven by sur-
plus equipment; ‘‘hand-me-downs’’
from mainframes and minicomputers.
Gary Kildall’'s CP/M was tested on a
worn-out Shugart SA-800 8-inch drive,
and for years the 8-inch diskette was the
only cheap and fast mass media for per-
sonal computers. Today’s 5.25 inch and
3.5 inch drives are little different from
the original 8-inch drive, are very simi-
lar in general operation to hard disk
drives, and similar in many principles to
cartridge tape and even CD-ROM drives!

The Basics of Diskettes
A disk drive is a simple device, when

you consider it as a collection of compo-
nents each performing a function. It is

designed to access locations on a dis-
kette both by rotating the diskette and by
moving an arm over the disk along one
radius of the circular diskette. It must be
in constant motion because it is the rela-
tive motion of the magnetized disk past
a magnetic sensor on the arm that per-
mits the head to “‘read”’ the magnetic
information on the diskette. A moving
magnetic field (like the magnetic fields
on the diskette) creates an electric cur-
rent in a fixed wire (like the magnetic
head on the arm of the disk drive).

Grab a 5.25" diskette from your com-
puter and examine it (figure 1). Dis-
kettes are plastic disks with magnetic
coatings, encased in an envelope with
holes. The long hole is where the disk
drive magnetic head moves around to
access areas of the diskette surface. The
small circular hole is where the index
sensor optically looks for a smaller hole
in the magnetic disk, which establishes
a constant starting point for each rota-
tion. The large circular hole in the cen-
ter is where the diskette media *‘cookie’’
is grabbed through the jacket by the drive
in order to rotate the media. (Cookie is
the manufacturing term for the media,
as it is punched out from a long mag-
netic tape in *‘cookie-cutter’’ fashion.)

Information on the diskette is stored as
a series of records of fixed length, called
sectors (figure 2). Sectors are lined up
around one circumference (circle of con-
stant radius) of the diskette on a track.
These tracks are arranged around the
center of the disk, like circular ripples in
a pond, and are counted from track 0
from the track closest to the edge of the
diskette. Sectors are counted from sector
1, the first following the index hole, and
are physically numbered in sequence

13

(1,2,3,...the significance of this will be
described later.)

The last consideration for diskette infor-
mation storage is density. Data is stored
as magnetic bits on a track using one of
two methods. ““Single density’’ stores a
bit of data as a single pulse, which in-
volves two changes or reversals of mag-
netic field. *‘Double density’’ stores more
data by representing a data bit as only
one change of magnetic field.

We can now intelligently describe the
“*classic’’ standard 8" format for tracks
and sectors, derived from IBM’s 3270
diskette 8" standard, was single-sided
(i.e. one magnetic head on the drive),
single density, 128 bytes per sector, 26
sectors per track, 77 tracks per disk.
This is classically known as a **quarter-
meg’’ or 256K byte format.

The disk drive

A disk drive (figure 3) has a motorized
spindle to grab the diskette and to rotate
it at constant (radial) speed. To access
the various tracks, an arm moves across
the diskette. The arm is driven by a
**stepper’’ motor, which moves the head
end of the arm to the same series of
places along the radius of the diskette.
These places, combined with the con-
stant motion of the diskette, define the
location of the tracks on the diskette.
The index sensor on the drive identifies
the beginning of the track, and timing
establishes the general location of each
sector and of the data in the sector.

The diskette’s magnetic information is
read by the read/write head at the end
of the arm that makes contact with the
diskette. Electronics will amplify sig-
nals read by the head and produce a
stream of binary data from the drive;
similar electronics take the binary data
written to the drive and send them to the
head, which creates magnetic fields that
are recorded onto the diskette.

Additional electronics manage the mo-
tors and sensors, and communicate with
the computer’s disk controller as sug-
gested by figure 4. The stepper motor
logic is commanded to move the head by
steps, forward or back. A track 0 senser

14

at the outer most head position signals
the arrival of the head at track 0. Most
drives hold the read/write head away
from the diskette. A “‘head load™” com-
mand operates a head load relay to drop
the head down onto the magnetic sur-
face. A write protect sensor reads a
defined edge of the diskette jacket to sce
if the diskette has a “‘write protect”
notch. (Curiously, on 8" disks the notch
must be closed to write; on 5" disks the
notch must be open to write!). Drive
select logic examines the four drive sc-
lect (address) signals from the computer,
and compares them to the drive's ad-
dress jumpers. If the comparison
matches, and the diskette is inserted and
up to speed, it enables the rest of the
drive’s logic including the drive ready
signal. The read/write electronics are
driven by the read and write signals from
the controller chip, usually through some
additional hardware, to adjust the tim-
ing of the data. The write gate signal
from the controller switches the drives
read/write electronics from read to write
for the duration of the disk write.

The controller chip

The carliest diskette controllers were
dedicated microprocessors with special-
ized programs, or a handful of digital
logic chips. For most computer systems
(except Macintosh!), the floppy control-
ler primarily consists of a floppy disk
controtler chip. These chips provide a
generic microprocessor interface that, to
the microcomputer, make the floppy disk
drive appear to be controlled by a num-
ber of registers (dedicated data locations)
in address space. They also provide a
control interface to the diskette drive
which is consistent with its standard
control signals; and rcad/write electron-
ics that read or write data. Finally, the
controller runs its own ‘‘program’ to
support the track and sector format of
the data on the floppy disk, details that
are normally invisible even to the pro-
grammer!

What does the programmer normally
see? The disk controller registers, which
are:

the Status (read) and Command (write)
register;

the Track register;

the Sector register;

the Data register,

the Drive Sclect *‘register’” (not a part
of the controller chip).

The track and scctor registers represent
the value of the track and sector to be
read from or written to. The command
register receives the command from the
microprocessor to read, write, seck a
track, or to format a track. The status
register tells the microprocessor the re-
sults of a command. The data register is
where data contained in the sectors is
read from or written to. The Drive Select
register is usually implemented as addi-
tional electronics in the controller. This
register controls the Drive Select lines
and oflen controls other signals includ-
ing drive type (8" or 5") and density
(single or double).

Diskette opcrations, particularly reads
and writes, are among the fastest /O
operations of your computer. Yet they
are dependent on placing a particular
portion of the diskette under the read/
write head, an operation that may take a
relatively long period of time to occur.
So, the disk controller chip must have
the ability to make the processor act
when the diskette is ready. One way to
force an action is by interrupt, The BIOS
software performs operations to prepare
for a disk read or write, executes the read
or write command, and then the soft-
ware enters and remains in a ‘‘do noth-
ing’” bit of code. When the disk control-
ler chip sees that the diskette is ready, it
sends a hardware interrupt signal
which forces the processor to jump to an
interrupt handler piece of code to per-
form the actual reading or writing of
each byte. Interrupts end when the read-
ing or writing is completed.

Another way to control the processor is
by forcing it to wait. The BIOS sofiware
performs all its operations to prepare for
a read or a write. Then the read or write
command to the disk controller chip to
send a hardware wait signal to the pro-
cessor. The microprocessor then per-
forms no opcrations at all until the disk
is ready for a byte of data. Only then is
the processor relcased from its wait state
and it continucs to execute the BIOS
code to read or writc the byte of data.

The Computer Journal / #63

Wait states end when the reading or
writing is completed.

In either case, the controller chip man-
ages these waits or interrupts. If the disk
is “‘never’’ ready, the controller chip is
programmed to time out after a set pe-
riod of time and to set error flags (bits)
in the status register. The status register
must be read at the end of the read or
write routine to verify the successful
completion of the read or write or to
determine the type of error.

Diskette formats and the controller
chip

What is going on when you format a
diskette? More to the point, what infor-
mation is written to the diskette at the
track and sector level? The good news is
that, for the most part, the floppy disk
controller chip handles most of this; the
“‘bad’’ news is that you have to know
about this if you write a format program!
If you are confused about something
called “‘logical’’ sectors versus ‘‘physi-
cal”’ sectors, the following offers an
explanation.

A diskette track contains more than a
collection of sectors with (your) data.
Before and after each sector is a header
and a trailer, respectively. The header
has a fixed format of several bytes, ex-
cept for a byte that is the physical sector
number. The trailer has a similar for-
mat, except for a checksum byte. A
checksum is a consistent way of adding
up the data in the sector to create a
unique byte value: on read, this provides
a confirmation to the controller chip of
the data if it adds up to a value matching
the checksum. On write, the chip gener-
ates a checksum after writing the sector
data. The rest of the header and trailer
provides time and diskette space for the
controller chip to prepare or complete
the read or write of the sector.

You’ll remember that sectors are stored
on the track one after another. You might
presume that sectors can simply be read
off, one after another as well, However,
if you have a slow microprocessor, by
the time the first sector is read and pro-
cessed, the second sector may have gone

The Computer Journal / #63

by and the processor would have to wait
until the next diskette revolution to read
it. A more efficient solution is to ‘‘stag-
ger’’ the sectors such that the next ‘‘logi-
cal” sector is actually some number of
*“‘physical’’ sectors away. For our stan-
dard 8" diskette, the distance is 6 sectors
and so sector numbers are counted off by
sixes (skipping 5) around the track. The
first physical sector is also logical sector
1; the 6th physical sector is logical sec-
tor 2, the 12th is 3, and so on as illus-
trated. Look in the BIOS code for soft-
ware details.

When a sector read or write is requested,
it is the controller chip that reads these
physical sector numbers, waiting for the
““right’’ sector (by number) to appear
before starting its data read or write. In
a similar fashion, the track has a header
and trailer, with the header containing a
track number which is read and verified
by the controller chip. (By the way, there
is no “‘logical vs. physical’’ track com-
plications on floppies; however there are
on hard drives, allowing spare tracks to
logically replace bad physical tracks!).

The drive in action

In the following action descriptions, I'll
refer to the disk drive, the (floppy dis-
kette) controller chip, the rest of the
controller, and th¢ microprocessor
which is running the BIOS software. I'11
also refer to the disk drive interface sig-
nals and registers by name. Use the pre-
vious illustrations to guide your reading,
and try to follow along,

A drive is selected by address (and pos-
sibly by size and density), and appropri-
ate data is sent to the Drive Select reg-
ister. The drive address is sent to all
drives, and the Drive Ready line of the
addressed drive must become active if
the drive is available. Before the first
read from or write to a diskette, the drive
should be ‘‘homed’’ so that the drive’s
track number and the track number reg-
ister are identical. A home command or
**seek to track 07" is sent to the diskette
controller chip. The chip then sets the
disk drive’s Direction line to ‘‘back”
and pulses its Step line (which moves
the head one step at a time) until the
Track 00 signal from the drive is active.

If the Track 00 signal ‘‘never’’ appears,
the controller chip eventually ‘‘times
out” and sets error bits in the Status
register indicating the Home or Seek
operation failed.

To read a sector, the BIOS typically
expects this order of operations:

Select drive;

Select track;

Select sector;

Read a sector.

“‘Select drive’’ may require a drive
change. As the controller chip knows
about only one drive at a time, informa-
tion about the current drive must be
stored, and information about the se-
lected drive must be restored. This infor-
mation certainly includes the track num-
ber; it may also include the type and
density of the drive, and also may sup-
port one of a number of diskette formats,

*“‘Select track’’ may require a step to a
new track, if the current track is differ-
ent. The controller chip is sent the new
track number, and then a ‘‘seek track”
command. The controller isthen ‘‘busy’’,
setting the Direction line and sending
Step pulses until the track is reached or
until a timeout occurs. The Status regis-
ter is then read by the microprocessor to
determine the result of the operation.

**Select sector’” requires a sector value
to be sent to the controller chip’s Sector
register. However, many BIOS’s have a
sector translation table. Why? Well, our
earlier discussion suggested that logical
sectors may be numbered differently from
the physical sequence of sectors on the
diskette, to allow time between sectors
before the next *‘logical’’ numbered sec-
tor. While this can be done on the physi-
cal diskette, it can also be done by a
conversion table in software. For a 26-
sector diskette with a physical offset of 1
(i.e. all sectors in physical order) you
can create a table to support a logical
offset of, say, 6, as follows:

1,7,13,19,25,5,11,17,23,3,...

and you simply add the logical sector
number to the table’s address and read

15

the byte at that location to get the trans-
lated physical sector number.

Finally, after the correct disk drive is on
the correct track (reading the track head-
ers) and the sector number is loaded into
the controller chip, a read or write com-
mand is sent to the controller chip. The
chip verifics the track number, waits for
the correct sector (in the sector headers)
to come along, and then tells the rest of
the controller (or microprocessor) to ci-
ther receive (read) or provide (write)
data until the sector is completed. The
controller compares its accumulated
checksum value with the read data’s
checksum in the trailer (or creates one
and writes it out). The status register is
sct by the chip. and finally the micropro-
cessor is told the operation is complete

and the BIOS can read the status register
to verify the operation.

If an error occurred, most BIOS’s will
retry: the read or write will be reissued
a number of times. If a “‘wrong track™
error occurred, the BIOS should try an-
other “‘seek’’ operation; if that fails, a
“home’’ operation is often tried as well.
All error conditions are usually reported
to the user if they persist, most errors are
occasional and the user does not see
them. Some utility programs can use
these errors to “‘mark’ a bad sector.

References

Any hardware manual on floppy disk
controller chips would be very helpful.
Any CP/M BIOS configuration book
would be helpful, too. A hardware
manual on disk drives would be useful.

Check your local library, public or col-
lege; or ask a clectronics tech or engi-
neer that fools around with disk drives
for a look through his or her library.

Bookstores are generally only good for
software books these days. Find a large
bookstore in your area and browse: my
recommendation of a particular book
won’t help you if you can’t find it. Look
for ‘ “hardware secrets’” or chapters (not
sections) on ‘‘disk drives’’.

Local libraries are usually good for older
books on computers. which tend to have
more of thesc technical details than cur-
rent books. Check the electronics sec-
tion and the computer section: they may
be separate. Also, look for 1970°s 1ssucs
of Byte, Dr. Dobbs Journal, or other
computer or electronic magazines. If

available, these are good sources.

<
I
il

INDEX SENSOR i
LED S ——

WRITE PROTECT
SENSOR ¢

LED
MNDEX CETECTCRS
-
1

Ho

2C. DRIVE
AOTCR

READY
-ONTHROL NDEX
LIGiC SR ———

S SK CHANGE
“NO 2DED
NRITE PROTECT
THAGK N0

N 1ISE

SCE SELECT
CawE 3ELECT

P‘—————

ACTCR CONTROL
l———

WRITE GATE

YRITE DATA

16

Figure 3 and 4

=EAD READ DATA
LCGIC
CIRECTION
STEPPER
MQOTCR
CONTROL STEP
-

The Computer Journal / #63

WRITE INDEX HOLE
PROTECT
d_—" noTcH

READ/WRITE
HEAD OPENING

PLASTIC
= ENVELOFE

~———_ OPENING FOR

DRIVING HuB

\ INDEX

ACCESS HOLE

TRACK 00 TRACK 76

DISC CARTRIDGE AND DiISC CONFIGURATION

Figure 1
1D 1D
INDEX MARK SECTOR 17 33 SECTOR 17 33
INDEX HOLE (1 BYTE) 01 BYTES BYTES 02 BYTES BYTES

[N S B
|/ ey

241 BYTES
SECTOR | VARIABLE 46 32 DATA DATA ETC
26 FILL BYTES BYTES SECTOR 01 SECTOR 02
INOMINAL)

4 N - iy
TRACK SECTOR
| ADDRESS| s00RESS| 2ERO |ADDRESS| zERO CRC CRC oame | 128 BYTES OF DATA 2oneE
SINARY BINARY
0 : 2 3 s 5 6 131 BYTES (1048 BITS)

7 BYTES (56 BITS)

IBM TRACK FORMAT (SEE IBM OEMiI MANUAL GA21-9190-2)

Figure 2
CODE FRAGMENT ON NEXT PAGE.

The Computer Journal / #63 17

Supporting code fragments

- code fragments as derived from a Tarbell SSSD BIOS and from SD SYSTEMS BIOS,
_to illustrate diskette controller operations. This code is close to working code, but may

" not be complete. The comments are functionally correct.
- For reference to people not famitiar with 8080 processors:
8080 registers are: A, B&C, H&L, D&E. M is equivalent to (HL).

MOV A B moves a value from the B register into A, the accumulator.

STA HELLO moves the A register into location HELLO
LXIH,0 moves 0000 {word) into the HL register pair
MVIH O moves 00 (byte) into the H register

LXI B0 moves 0000 into the BC register pair

DAD D adds the contents of DE to HL

- This controller chip uses WAIT STATES to delay the processor. A read from
- or a write to the DATA register produces waits states unless NOWAIT is previously
. called. YESWAIT enables wait states. The controller chips registers are:

TRK EQU 7 ‘track
SECTOR EQU 7 .sector
STATUS EQU 7 ;status
CMD EQU STATUS ;command register, same address as STATUS
DATA EQU 7 .data infout register
NBYTES EQU 128 ;one sector's worth
: FIXED DATA TABLES FOR TWO DRIVE SYSTEM
DPBASE. DW TRANS,0000H ,FORDISK 0
DW 0000,0000
oW DIRBF,DPBLK
bw CHKOO,ALLOO
DW TRANS, 0000 JFORDISK 1
ow 0000,0000
bpwW DIRBF,DPBLK
DwW CHKO1,ALLO1
. the logical to physical translation table
TRANS. DB1,7,13,19,25,5,11,17 \SECTOR TRANSLATE
DB 23,39,15,21,2,8,14 ;sector offset of 6
DB 20,26,6,12,18,24,4
DB 10,16,22
. MOVE DISK TO TRACK ZERO
HOME XRA A " TRACK ZERO
STA TRK \UPDATE OLD WITH NEW.
mvi a,03H ;home command
out cmd .send command to controller chip
call busyx .wait for controller chip status not busy
xra a ;and do a seek to zero to verify
CALL SEEK
RET :RETURN.

. SELECT DISK DRIVE NUMBER AICCORDING TO REGISTER C.
. set up seek now, do physical select later at read or write time

SELDSK. LXIH,0

.if error, return HL=0

MOV A C :GET NEW DISK NUMBER.
cpPt2 s it>or=27

RNC ;ONLY HAVE TWO DRIVES
STA DISKNO ;SAVE DISK NUMBER
MOV LA :DISK NUMBER inL,0inH
DAD H HL*2

DADH "4

DAD H '8

DADH ;*16 (16 is length of block)
LX! D.DPBASE . get table address

DADD ;add DE .
RET

;address of correct base table returned in HL

: SET TRACK NUMBER TO VALUE IN REGISTER C
, ALSO PERFORM MOVE TO THE CORRECT TRACK {SEEK)

SETTRK: MOV AC

,GET NEW TRACK NUMBER.

STA TRK \UPDATE OLD WITH NEW
CALL SEEK ;MOVE TO NEW TRACK
RET \RETURN

. SET DISK SECTOR NUMBER, do sector locate at read/write time.

SETSEC: MOV AC

STA SECT

RET

:GET SECTOR NUMBER.
PUT AT SECT # ADDRESS.
,RETURN FROM SETSEC

:SECTOR TRANSLATE DE has the address of the translation table. (this is the first
. word of the DPBASE table, TRANS.) BC has the sector number to be translated
. return HL with the new sector number

SECTRAN: XCHG

:swap HL and DE

DAD B . HL=HL+BC, point to new sector number
MOV LM read the new number from TRANS into L
MVIHO | clearH

RET

- MOVE THE HEAD TO THE TRACK IN REGISTER A.
. as a write to the data register is involved, wait on read/Awrte must be disabled temporarily

SEEK PUSH B ,save registers on stack
PUSH PSW .processor status word
PUSHH
CALL SELDSK1 ,do physical drive select
POP H ;restore registers
POP PSW
MOV B.A ;SAVE DESTINATION TRACK.
MVt A RTCNT ;GET RETRY COUNT

SRETRY: STA ERCNT \STORE IN ERROR COUNTER.
IN TRACK :READ PRESENT TRACK NO.
CMP B ;SAME AS NEW TRACK NO.?
JNZ NOTHR ;JUMP [F NOT THERE

18

THERE POP B .restore B&C.
RET RETURN FROM SEEK
NOTHR: call nowait ,disable wait on controller
call busyx -wait for not busy on controller
MOV AB :RESTORE track FROM B
OUT DATA . TRACK TO DATA REGISTER
MVI A 16H \SEEK command, SET FOR 10 MS STEP
\VERIFY ON LAST TRACK.
OuT CMD [ISSUE SEEK COMMAND
call busyx ;test not busy on controlier
call yeswait , enable wait
IN STATUS \READ STATUS.
ANl 91H ;LOOK AT BITS
JZ THERE ‘OK IF ZERO.
LDA ERCNT :GET ERROR COUNT
DCR A ;DECREMENT COUNT
JINZ SRETRY RETRY SEEK.
bx2: POP B ;RESTORE B&C
LXI H.SKMSG ;PRINT "SEEK .
IN STATUS \READ DISK STATUS
ANl 91H ;LOOK AT ERROR BITS.
MOV DA PUTINREGD.
JMP ERMSG ;D0 COMMON ERR MESSAGES.

. READ THE SECTOR AT SECT, FROM THE PRESENT TRACK.
. READ into memory at ADDRESS DMAADD.

READ: CALL SELDSK1 .do physical drive select
read2: MVI A RTCNT ,GET RETRY COUNT
RRETRY: STA ERCNT ;STORE for countdown.
LHLD DMAADD ;GET STARTING ADR in HL.
MVI A 0DOH :send controlter interrupt command
OuT CMD ; to get data in status register
XTHL :SOME DELAY required by chip
XTHL
IN STATUS :READ chip STATUS,
ANl 20H ;LOOK AT head load BIT
LDA SECT ;GET SECTOR NUMBER.
READ1: OUT SECTOR ;write sector number to chip.
MVI A,.RDHDL ;READ command WITH HEAD LOAD
JZ READE if zero, HEAD NOT LOADED.
readf: MV A RDCMD -else use command W/O HD LD.
READE: OUT CMD :SEND COMMAND TO controlier chip.
push b ;save B
MVI B,0080H ; counter to read 128 bytes (one sector)
ot .disable interrupts during read
RLOOP: IN DATA ‘READ A DATA BYTE FROM DISK, force wait.

;controlier forces processor to wait until byte is available

MOV M A :PUT BYTE INTO MEMORY.
INX H INCREMENT MEMORY POINTER
DCR B , decrement counter
JINZ RLOOP :KEEP READING
pop b restore B
El ;reenable interrupts
RDDONE: IN STATUS ;READ DISK STATUS
ANl 9CH \LOOK AT ERROR BITS except busy.
RZ :RETURN IF NO ERROR
CHECK: CALL ERCHK ;CHECK FOR SEEK ERROR
LDA ERCNT \GET ERROR COUNT
DCR A \DECREMENT COUNT
JINZ RRETRY ;TRY TO READ AGAIN
X! H,RDMSG PRINT "READ .
JMP ERMSG

{PHYSICALLY SELECT DISK FOR READ,WRITE, HOME OR SEEK
SELDSK1: LDA DISKNO \GET requested DISK number

MOV C,A
LXI H DISKNOC ,compare to DISK CURRENTLY SELECTED
CMPM
RZ ;if same, already there so return
MOV AM ;else GET OLD DISK NUMBER.
PUSHD . save DE registers
MOV EA JPUT OLD DISK NO. IN D&E.
MVI D,0
LX! H,TRTAB .GET ADDRESS OF TRACK TABLE.
DAD D :ADD DISK NO. TO ADDRESS to get old table
IN TRACK ‘READ 1771 TRACK REGISTER
MOV M A :PUT result INTO old TABLE
MOV AC ;GET NEW DISK NUMBER.
MOV EA JPUT NEW DISK NO. IN D&E
LXI HTRTAB to GET ADDRESS OF new TRACK TABLE
DAD D ;ADD DISK NO. TO ADDRESS
MOV AM \GET NEW TRACK NUMBER
OUT TRACK ;PUT INTO 1771 TRACK REG
MOV AC {UPDATE OLD DISK NUMBER.
STA DISKNOC
MVI C,DRIVEO
ORA A ;drive 07
JZ DSK1 if not, drive 1
MVI C,DRIVE1
DSK1.
IN SELECT ,get values
AN} OFOH ;mask off drive #
ORI C ;new drive
OUT SELECT ;SET THE LATCH to select the drive
XRA A SETA=0.
POP D ; restore DE
RET :RETURN FROM SELDSK

R END CODE FRAGMENT

The Computer Journal / #63

Real Computing

By Rick Rodman

32-Bit Systems
All Readers

Languéges

Platform-independent languages: Call-
ing conventions

Rather than cover the topics I promised
last time, I have a burning desire to
present technical nuts-and-bolts issues
that could affect your choice of a plat-
form-independent language.

The first issue is calling convention.
You'll recall that the first-generation
language was plain assembly with
branches, and the sccond-generation lan-
guage was assembly with subroutines.
When you call a subroutine, there are
three basic issues;: how do you pass
control to the subroutine and get it back,
how to you pass parameters to the sub-
routine, and how do you get parameters
back. A combination of choices, one
from each group, is what we call a *“call-
ing convention.”” Normally the control
flow is determined by the design of the
processor hardware, but the latter two
cases offer virtually limitless possibili-
ties.

The calling convention is really inde-
pendent of the language. Any language
could use any calling convention. In
fact, some compilers or interpreters have
options, keywords or ‘‘pragmas’’ to al-
low other calling conventions to be used
for particular calls. Nevertheless, in each
language there is a ‘‘standard’’ calling
convention.

In Forth, there are assumed to be two
stacks, a control stack and a data stack.
Calls and returns are placed on the con-
trol stack in the manner determined by
the hardware. Data being passed is
pushed onto the data stack in the order
passed; the subroutine removes the data
it needs from the stack, a process re-

The Computer Journal / #63

ferred to as ‘“unjunking the stack’’. Data
returned by the subroutine is pushed onto
the data stack in the order of return.

In Pascal, the control stack and the data
stack may be the same. When calling a
subroutine (function or procedure), data
is pushed onto the stack in the order
passed; the called subroutine does the
“‘unjunking’’. Data being returned, if
any, is returned in a CPU register. Since
the register can only contain a single
value, or “‘scalar’’, only one value can
be returned.

Why this limitation? For two reasons.
First, so the programmer can have the
‘luxury’ of carelessly ignoring the return
value without any code being generated,
second, because Pascal was originally a
simple teaching language designed by
Wirth and not intended for any practical
use.

In C, the standard calling convention is
even stranger. There is assumed to be
only one stack. Parameters being passed
to a function are pushed in reverse order
of call, last parameter first, and the caller
is required to unjunk the stack. Data
being returned is placed in a register, as
in Pascal. '

The reason for the reverse order and
caller unjunking is to allow a variable
number of parameters tobe passed. You
see, if the parameters were pushed in the
order passed, we couldn’t easily find the
first parameter passed without knowing
how many parameters were passed. Also,
the subroutine can’t be expected to unjunk
the stack if he doesn’t know how many
parameters the caller pushed.

Nearly every implementation of the lan-
guages I've mentioned use the calling

conventions described. In other lan-
guages, such as Fortran and PL/I,
implementers seem to have been allowed
more freedom to choose a scheme they
like. But what I’d like to point out is the
fact that, even though the calling con-
vention really is not determined by the
syntax of the language per se, it has a
““princess and the pea’” influence on the
implementation of the language: unseen,
but painfully felt.

Historically, C’s variable-arguments fea-
ture has been far more costly than any-
one could have anticipated. But now
that it’s been “‘engraved in stone’ by
the ANSI and 1SO committees, C, as a
language, is stuck with it. Ironically,
after the thousands, perhaps millions, of
hours spent figuring out a standardized
way it could be made to work, the syntax
they developed is so cumbersome that
almost nobody goes to the trouble.

Forth enthusiasts can point out that their
language has the inost powerful and
convenient calling convention. Interest-
ingly, Digital Research’s PL/I, offered
for the 8080 and the 8086 but now, un-
fortunately, off the market, used a stack-
in, stack-out calling convention. Even
strings were passed on the stack.

DR’s PL/I-80 also beat every other CP/
M compiler on the market in another
area; code quality. But what do we
mean by that?

Code Quality
In general, by ‘‘code quality’” we mean,

in a comparative sense, that code gener-
ated for a given statement is smaller

19

and/or faster. The easiest way to explain
this is with an example.

Consider the C statement: *‘i = qqq[x
I’’, where all of the variables are stack-
frame variables (that is, local variables
implemented in stack memory, with the
stack pointer moved down to make
room). The code for the NS32 generated
by Small-C looks like this:

ADDR 0(SP),R1 R1 points to i
ADDR 4(SP),R2 R2 points to qqq
MOVD 18(SP),R0 Get xin RO
ADDD R2,RO Add RO to R2,

indexing into qqq
MOVXBD 0(R0),0(R1) Move the
qqq value to i.

But Phil Prendeville’s C compiler gen-
erates much better code:

addr -10(fp),;0 Point to qqq with RO

addd 8(fp).r0 Add x to RO

movxbd 0(r0),-16(fp) Move the qqq(x]
valuetoi.

The GCC compiler generates very simi-
lar code. Note that the Small-C com-
piler generates code for very small op-
erations. Really, the problem is that
Small-C internally operates on an 8080
CPU model. Let’s see the 8080 code
Small-C generates for the same state-
ment:

Ixi h,0 Offset of i.
dad sp Add to stack pointer.
push h Push HL (points to i).
Ii h,4 Offset of qqq.
dad sp Add to stack pointer.
push h Push HL (points to qqq.)
Ixi h,18 Offset of x.
dad sp Add to stack pointer.
call 7?gint Load HL from

memory pointed to by HL.
pop d Pop address of qqq
into DE.
dad d Index into qqq with HL.

call 7?gchar Get the byte pointed to
by HL into HL.
pop d Restore address of i into DE.
call ?pint Store HL at memory pointed
to by DE.

Would an assembly programmer have
written anything like that? I doubt it. Of
course. the 8080 doesn’t have very good
instructions for performing stack-frame
variable work. The only reason for us-
ing stack-frame variables is to allow
recursion; better performance can be
obtained from the 8080 by using static

20

variables for most temporary variables.
By the way, the Z280 (aka Z800) has
some new indexing instructions which
would allow better code to be generated.

Looking at the 8080 code, one can un-
derstand why many assembly coders
would view the use of any compiler with
revulsion. This is why I presented the
NS32 examples. Let’s face it - the Z80,
with all those registers and bit-manipu-
lation instructions, was designed for
assembly language. Most newer proces-
sors have added instructions which al-
low compilers to generate better code.
Still, no machine will ever generate bet-
ter code than a smart human assembly
coder.

When discussing code quality, Forth
requires special criteria. While the
threaded code is extremely small, it is
slow because every single instruction
word involves at least two jumps and, in
some cases, a call and a return. In most
cases, the processor bandwidth loss is
over fifty percent. Some Forth packages
allow “‘inline’’ coding in which the in-
terpreter overhead is reduced.

Should we be overly concerned about
code quality? Only when it makes a
difference - when memory is tight, or
when:speed is critical. In a dedicated
processor that checks the temperature in
a hot water heater once every five min-
utes, these considerations wouldn’t ap-
ply. Small-C’s syntax limitations are
usually more of a problem than its code
quality. It does an acceptable job, but if
you have a better compiler, use it.

These, then, are the technical issues to
keep in mind when comparing two dif-
ferent languages. Unlike the syntax is-
sues, in which the ““prettiest’’, most read-
able language always wins, the technical
issues can be hard to sce - but they are
usually quite easy to quantify.

A novel approach to platform indepen-
dence which didn’t catch on was UAL,
“Universal Assembly Language™, in
which assembly macros are used for all
operations. This approach was used
successfully in the original implementa-
tion of the SNOBOL interpreter. The
problem of every assembler having dif-

ferent macro syntaxes, or no macro sup-
port at all, could be overcome by writing
a separate macro processor using, say,
the macro syntax of the M80 assembler
(in my opinion, the best assembler ever
written for any processor).

Modularity

For all the breath that’s been wasted in
shouting about Object Orientation, the
real thrust of QO was always modular-
itv: reusable packages of code. Funny,
but I thought that’s what Structured Pro-
gramming was supposed to do for us.
The real problem is not expressible in a
svitax for a programming language.
anyway - because the real problem is
that the environment in which the pro-
grams run does not support modularity.

Take, for example, the PC environment
- a worst case. We have four types of
object code modules. First, there are
device drivers, “*.SYS” files. Next, there
are ‘‘absolute’” programs, or **.COM”
files. Third, there are ‘‘executable’ or
** EXE’ files. Lastly, there are modular
object files, or <.OBJ” files. Only the
last of these corresponds on a one-to-one
basis with a software module - and it is
the only onc which is nor directly ex-
ecutable! Only a hard-bound *‘clump’
of modules can be run.

How stupid, you might say. But this is
true of a// the common programming
platforms that exist! True, AmigaDOS,
Windows, OS/2, and some types of Unix
do support dynamic linking, which does
allow modulcs to be separately compiled
and dynamically linked. But in each
case there arc substantial problems which
prevent truly modular design from being
done. Also. there’s Forth. Forth’s Achil-
les Heel is its linear dictionary, which
only allows unloading (‘‘forgetting’’)
from one end; words in the middle can’t
be replaced.

In a truly modular programming envi-
ronment, modules could be loaded, un-
loaded or replaced at will or as needed.
There would be only one form of object
code, whether for devices, program
modules, or whatever. Nothing would
be ““hard-bound’’, even within the oper-
ating system - cverything would be dy-

The Computer Journal / #63

namically loaded and linked. Program-
mers would find such an environment
delightful.

You wouldn’t always need the complete
environment. Ina microwave oven con-
trolled by an 8051, for example, the
dynamic links used during debugging
could be replaced by hard links in ROM.
If the modules were developed in a plat-
form-independent language, we could
develop the code on a nice desktop ma-
chine, then recompile and burn into
PROM for testing.

The outside world takes for granted we’ve
had such an environment for years, of
course. That’s onc rcason that, when
what we call “*normal users’’ start using
computers, the predominant reaction is
disillusionment, followed by frustration,
followed by resignation.

In truth, Object-Oriented Programming
is just new buzzwords for old concepts.
(**The PIP method copies one instance
of a file object to another.”’) The old
concepts are still valid, of course. It’s
sad how the computer world dashes
madly from one fad to another without
ever really completing any of its grand
dreams.

More on the Internet

Gary Welles followed the instructions in
#62 and got this close to actually getting
a file from an FTP server. What makes
it interesting is that he’s accessing the
Internet from MCI Mail through what
we call a “"gateway’’. Gateways in the
E-mail world are much like customs
officers in the Byzantine Empire. These
are the seams where different electronic
worlds (*‘cyberspaces’’) meet, and they
are often unseemly.

It’s usually easier to get through these
things from the Internet side. Getting at
them from the other side can be quite
tricky, and fraught with incorrect or in-
complete instructions, commands or
addresses that don’t work, etc. The easy
way to go about E-mail is to start the
correspondence from the Internet side.
Then, the recipient can look at the ad-
dress that the message says it’s from - or

The Computer Journal / #63

Jjust enter a Reply command, and you're
off!

Gary Welles is on MCI Mail. From the
Internet side, his address is
0001178863 @mcimail.com’; presum-
ably, 0001178863 is some kind of sub-
scriber number. You can also cxpress
this in what is called “‘bang notation’’,
where the part before the at-sign is moved
to the end, separated off with an excla-
mation point (‘‘bang™’):
‘““mcimail.com!0001178863"".
Compuserve accounts can be mailed to
with the identical syntax,
““<accountnumber>@compuserve.com’ ",

AT&T Mail is different, because it uses
X.400 internally. X.400, in case you
haven’t heard, is the new International
Standard which the CCITT, under the
auspices of the International Organiza-
tion for Standardization (1SO), has de-
veloped for us since we need something
to uniquely identify individuals for elec-
tronic mail purposes. You may have
thought we already had a very nice sys-
tem which works quite well, called SMTP
(Simple Mail Transfer Protocol). That
may be, however, Standards Bodies never
simply bless an existing, working sys-
tem when the opportunity arises to de-
sign Something Better from the ground

up.

Anyhow, X.400 addresses, when written
out in text form, have a bunch of sec-
tions separated by slashes in which the
person’s Administrative Domain, Pri-
vate Domain, Organization, Surname,
et al. are specified. They look some-
thing like *‘/A=US/P=Virtech/G=Rick/
S=Rodman’’, or possibly worse.

At one time, I was able to send mail to
an AT&T Mail subscriber by using an
a d d T e S S
“‘uunet!mhs.attmail.com!<company>/
<X.400 stuff>"" (*‘bang notation’’, no-
tice). However, it’s no longer working;
I have no idea why. AT&T Mail sub-
scribers can send mail to me with the

address: ‘‘internet!virtech.vti.com!rickr/
G=Rick/S=Rodman’’.

Next time

Next time we’ll return to Minix, Linux,
and maybe Uzi. Also, I'll discuss the
dynamic linking in AmigaDOS. 0S/2,
and Sun Unix. In the meantime, keep
your head high and your overhead low!

Where to call or write

BBS: +1 703 330 9049 (eves: fax during
the day)
E-mail: rickr@virtech.vti.com

SUPPORT
OUR
ADVERTISERS
TELL THEM
"I SAW IT IN
TCJ"

SCSI BACK ISSUES

Here is a list of Back Issues that per-
tain to SCSI.

#22 - SCSI Introductory Column.
#23 - SCSI troduction to interface.
#24 - SCSI command Protocol.

#25 - Building a SCSI adapter.

#26 - Software for SCSI adapter.
#28 - SCSI for Real Time Control.
#31 - SCSI for General O.

#33 - SCSI for the S-100 Bus.

#48 - SCSI/Bernouli Drive for CP/M.

Issue 20 to 25 available in Volume 3,
Otherwise all issues available sepa-
rately. See pages 50/51 for list of back
issues and how to order them.

21

Regular Feature
Kaypro Support
Power Supply Upgrade

Mr. Kaypro

By Charles B. Stafford

TODAY’S SURGERY

Wherein we solve a conundrum, per-
form a seemingly impossible transplant,
and end forever, the cries for ‘*“More
Power’’.

ODDS AND ENDS

In the days since we last met amongst
these pages, several TRUTHS have been
revealed to me via the magic of ‘‘snail
mail’” and the telephone. In keeping with
my oath as a NEOPHYTE SCRIBE, 1
am honor bound to share them with you,
and in fact I would anyway, since it’s all
NEAT STUFF.

TRUTH #1

When doing the K-II to K-IV upgrade, if
you are nervous about soldering, even
after all those hints and reassurances,
you could just bend out the appropriate
pins on the designated ICs and use those
micro-clip test leads that Radio Shack
sells to take the place of those soldered
jumpers. They are really very solid when
clipped on carefully, although, I suppose
it would be possible to dislodge one or
more if the machine travels very much.
The drawback is that the ready-made
test leads are really too long, and act as
antennas for all the RF flying around
inside the case. A better solution would
be to buy just the clips themselves and
make your own, so that they are as short
as possible. A little slack won’t hurt, but
a lot will. You install the test clips by
pulling up on the top, insert the wire,
and push down exposing a tiny wire
hook, which you put around the IC leg
or connector pin, and which holds on for
dear life when you release the pressure.

22

TRUTH #2

A “‘eutectic’’ solder (approximately 63/
37) is superior to a 60/40 solder, both
from the ease of use and the appearance
standpoints. It melts more cleanly, i.e.
for all practical purposes there is no
“‘semi-molten’’ state, and the finished
connection is brighter and smoother. An
additional feature of eutectic solders is
that they usually have small amounts
gold and silver added to prevent them
from dissolving trace amounts from the
contacts you're trying to solder.

TRUTH #3

A couple of issues back, 1 mentioned
that a good way to cure *‘screen jitters™
was to implant a “‘wall wart’’ to supply
power to the video circuit-board. I men-
tioned:a ‘*12v dc, 2 amp’ rating. I have
been reminded that the video circuit-
board really only requires a 12v dc, 1
amp rating. It will probably be a lot
casier to find one of these than the 2 amp
variety.

These ““TRUTHS”’, by the way, come to
you courtesy of Lee Hart, an HCW, to
whom I am indebted, AND who has a
product called “*Write Hand Man’’. It is
similar to *‘Sidekick’” (the DOS/OS2
product) and is at present ready for the
HEATH/ZENITH platforms, as well as
for Kaypros running the original CP/M
operating systems. Lee can be reached
at 323 West 19th, Holland MI 49423,

AND NOW, IN RING 3

This will probably be one of the most
controversial, and down the road a picce,
one of the most useful transplants to
date. It isn’t difficult or really fussy, but
does require care and attention and is, [

think, a very good example of *‘making
do’” with readily available components.
The only critical part of this operation is
paying attention to the color codes on
the wires of your particular implant.

We are using ‘‘crimp-on’’ connectors
for this transplant to simplify things and
in the interest of both time and resource
procurement. Not everyone has access to
complete electronic supply houses, but
there is a Radio Shack or auto parts store
in almost every town. A “‘crimp-on’’ kit
usually consists of the crimping tool, an
assortment of connectors, and instruc-
tions and costs about $ 12.00 (cat # 64-
409) at Radio Shack. There are other
ways to make the connections, including
new connectors, and solder and heat-
shrink tubing for the purists and HCWs,
but the ‘‘crimp-on’’ connectors are by
far the most convenient for us amateurs.

As most Kaypro keepers are aware, the
original power supplies were marginal,
as far as capacity, and the wave solder-
ing didn’t always ‘‘glue’’ the connector
pins to the power supply circuit-board
very well. The results have varied from
“‘unreliable boot’ to ‘“‘lunched hard
drives™ to ‘‘smoked’” power supplies.
The original power supplies were 65 watt
versions, made by three different manu-
facturers, Cal DC, Boschert, and Astec,
all good companies. Later supplies were
85 watt versions, mostly made by Astec.
none of them had regulated 12v dc, which
accounts for the ‘‘screen jitters’’, and
none are currently available. I have found
some 100 watt Astec supplies in the lo-
cal surplus electronics store, which had
the same size connector, but the order of
pins is different, which means rearrang-
ing the original connector and the 12v is
still unregulated.

The Computer Journai / #63

About two years ago, [needed a fan for
a Kaypro 10, that had suffered a light-
ning strike, and being too cheap to buy
one at Radio Shack, I dismantied a dead
PC-XT power supply just to get at the
fan. It turned out that the fan wouldn’t
- work for my application because it was
a 12vdc fan and the Kayprouses a 120vac
fan, but LO and BEHOLD, the actual
guts of the power supply turned out to be
asingle circuit-board. The more I looked
at it, the better it looked as a candidate
for this kind of transplant. It is shorter
than the original Kaypro supply, but a
little wider, has a plug-in connection for
the dc fan, 2 line connections for ac
power. a switch for 110/220v, 2
motherboard power conncctors, and 4
{count ‘em 4) drivc power connectors. It
is also rated at a Phenomenal 150 watts
1! The power supply for this project
was procured from System Masters in
San Francisco $ 14.00 [Phone # (415)
822-3779]. The first one arrived miss-
ing one of the drive connectors. When
[called to complain, they mentioned an
RMA number, but Steven Chang, the
Proprietor. called back within a minute
and a half to tell me to forget the RMA
number, and that another supply was on
the way. In fact, it arrived the very next
day '!!

PRELIMINARIES

First assemble all the things you think
you'll need. We're going to start by
preparing the power supply and then put
that aside while we prepare the patient.
Here’s what you’'ll need:

TOOLS

Soldering iron (don’tbe frightencd yet.
they’re only wire connections)
Solder (see TRUTH # 2)

2 Phillips screwdriver

1 Phillips screwdriver

3 inch common screwdriver

Diagonal cutters

Pliers or very small adjustable wrench
Wire stripper or suitable substitute
Crimping Tool

Electric or Manual Drill

1/8th inch drill bit

2 or 3 inch Masking or Duct tape
Vol/Ohm Meter

1 Bath Towel

The Computer Journal / #63

NECESSARY PARTS

I PC-XT power supply

8 18ga crimp-on wire connectors (some-
times called “*butt splice™ connec-
tors)

PREPARING THE IMPLANT

Before we start dismantling the XT power
supply, we need to verify the wire color
code. The easiest way is use it to power
a couple of drives, (the ones in the
Kaypro will do, just disconnect the rib-
bon cable and the drive power connec-
tors and plug in connectors fron the XT
supply) and then measure the voltages of
the variously colored wires. Usually
Black is ground, and Red is +5v. Beyond
that nothing is certain. (When you look
at the Kaypro, All the wires are White,
rcal helpful, right?) The power supply
must be loaded (supplying power to some-
thing) in order to develop the right volt-
ages.

The common colors are:

BLACK...__V +- (NORMALLY GROUND)
RED........ _V +-(NORMALLY +5V)
YELLOW.. _ V+- (NORMALLY +12V)
GREEN... V+-

ORANGE. __ V +-

Use this as a wor’ *heet, write in the
voltage values and circle the + or - as
appropriate. Write in any other colors
that are on your power supply and their
voltages. You are likely to find -5v and
-12v as well.

1. Disconnect your test rig and proceed
with the disassembly of the power sup-
ply. (this is the fun part, I guess I never
got past the taking clocks apart stage).
Remove the screws holding the metal
box together, and carefully take the top
off. The fan will come with it, but you'll
have to unplug the fan power connector
from the circuit-board. Some power
supplies won’t have a connector here. so
vou’ll have to cut the wires midway be-
tween the fan and the circuit-board. The
on-off switch is usually wired direct to
the circuit board, so cut those wires as
close to the switch as you can. There is
one more switch, that sclects the input
voltage, 110/220v. Cut the wires to this

switch, and then using your VOM (Volt
Ohm Meter) determine if is closed or
open when 110v is selected (usually
closed). Now remove the circuit-board
from the bottom of the case.

2. If the voltage selector switch is
closed in the 110v position, unsolder one
of those wires from the circuit-board,
and use the other one as a jumper to
permanently select 110v.

If the switch is open in the 110v position
just unsolder both wires that led to it.

3. Put the power supply aside now, and
we'll prepare the Kaypro

PREPARING THE PATIENT

1. Using the #2 Phillips screwdriver
and a modicum of care remove the 10
screws securing the ““hood’ and then
remove the ‘‘hood itself.

2. Disconnect all the connectors from
the motherboard, remove the screws on
either side of the parallel connector us-
ing a #1 Phillips screwdriver. and on
either side of the DB-25 connector(s)
using a small (tiny) wrench or very very
carefully with a pair of pliers. Remove
the 2 #2 Phillips screws on the back of
the case and the 2 holding the
motherboard to the long standoff insula-
tors, and remove the motherboard.

3. Disconnect and remove the existing
power supply, saving the screws (8) and
standofT insulators (4).

4. Remove the carrying handle.

5. Fold a bath towel in quarters, put on
the work surface and put the Kavpro
face (screen) down on it.

6. Position the “*new’” power supply on
top of the back. approximately over the
place where the original was. with the
heat sink (the big aluminum bar) toward
what would normaily te the top of the
Kaypro. Looking at the Kaypro from the
back, line up the top left holes of the new
power supply and the case. Square up
the new power supply so that the top

23

edge of the circuit-board is parallel to
the top of the case, and mark the other
three holes.

7. Set the new power supply aside
again, using the duct/masking tape make
““tents’” under (on the inside of the case)
the places where the new holes will be to
trap any metal shavings or splinters, and

" using the 1/8th inch drill, drill new holes.

8. Carefully debur the outside of the
holes, squash the ‘‘tents’’ to pick up
anything in them, remove the ‘“‘tents’’,
and set the case back down on its feet.

9. Reinstall the standoff insulators in

the new holes, and reinstall the carrying
handle.

We’re now going to trace all the power
wires that DON’T GO TO DRIVES,
identify them as to voltage and polarity,
and cut them within an inch of the origi-
nal power connector, so that we can re-
use them with the new power supply.
This is the time to be extra careful, we’re
going to hook these wires up to the new
power supply, based on your identifica-
tion of them.

10. Trace the 2 wires from video circuit-
board connector back to the original
power supply connector, and by match-

~ing the connector and the pins on the

power supply, identify the +12v and
ground connections, and tag them with
a piece of masking tape appropriately
marked. Now cut them about 1 inch
from the long power supply connector.

11. Trace the wires from the
motherboard connector back to the long
power supply connector, identify and label
these before cutting. The motherboard
is marked as well, so the ends should be
the same.

12. Trace the wires from the front panel
LED, identify, label & cut.

13. The only wires left connected to the
original power supply connector should
be those that go to the power switch and
those get the same treatment, identify,
label and cut. In addition, they should be

24

removed from the switch, by just pulling
the spade connectors off the blades on
the switch.

GET THE SHOTGUN PA, IT’S
TIME FOR A WEDDING

Now that both the patient and the im-
plant are ready, it’s time for the main
event,

1. Identify The two *‘motherboard’” con-
nectors on the cables attached to the
“‘new’” power supply, and cut them off
as close to the connectors as you can.

NOTE

From this point on, when the word *‘con-
nect’’ is used, it includes stripping about
1/4" of insulation from the wires in-
volved, and crimping on a *‘butt connec-
tor’” (except where noted) to splice the
wires.

2. Find the two wires with the connector
that used to carry power to the XT power
supply fan, and respecting polarity, con-
nect them to the two wires that go to the
video board connector.

3. Find the original ‘‘motherboard”’
power connector and wires, and connect
the appropriate wires to the ones that
were cut off in step 1, just above. (i.e. the
XT power supply motherboard power
cables)

4. Find the two wires with the spade
connectors, and connect them to the XT
power supply wires that used to go to the
line power switch, making sure that the
combined length is great enough to reach
the Kaypro power switch when the XT
power supply is mounted in the case.

5. Mount the XT power supply on the
standoff insulators, with the heat sink
up, and the cables toward the right side
of the Kaypro when viewed from the
front.

6. Re-connect the small 2 conductor
connector, now attached to the video
circuit-board connector, to the XT power

supply.

7. Re-install the ‘‘motherboard’’, push
the spade connectors back onto the blades

of the power switch, re-install the
motherboard power connector, and care-
fully re-check all your work.

All that’s left is to turn on the power and
test your implant.

FINAL OBSERVATIONS

There is plenty of room for improvisa-
tion in this project. The PC-XT power
supply is not the only one that can be
used, there is now a ““mini AT’ desk-
top/ ‘‘micro-tower’’ power supply that
is physically smaller, that could be used
equally as well. I chose the PC-XT vari-
ety because it was significantly less ex-
pensive. Thave seen *‘double-stick”™ foam
tape used to mount circuit-boards effec-
tively, and while I wouldn’t recommend
it for a power supply in a portable
(luggable) machine, the internal modem
in my own machine is mounted to the
motherboard shield that way. If you an-
ticipate traveling internationally with
your machine, you could retain the 110v/
220v switch by mounting it with a couple
of appropriately sized washers, in one of
the ventilation slots on the back panel.

One Caveat

If you decide to use a power supply other
than a PC-XT compatible, there may be
one or more small daughter boards in-
side the case. These are usually for
electro-magnetic radiation control, and
you’ll have to figure out where and how
to mount them.

PREVIEWS

I’d like to be able to tell you what we're
going to do next issue, but I really don’t
know. Ifyou have any requests, just drop
me a line or tell Bill.

To contact Mr. Kaypro, check out
Chuck's ad on the inside back cover.

The Computer Journal / #63

TCJ Center Fold

Special Feature
All Users
XEROX 820

THEORY OF OPERATION

8.1 General

The 820 family is a table top microcomputer composed
of the following assemblies:

820 IP Processor

1. D.C. Power Supply

2. Processor (CPU) PWA.
3. CRT Assembly

4. Keyboard Assembly -

820 IP— SA400 (5.25" Single Sided Floppy Drive)
820 IP —SAB00 (8" Single Sided Floppy Drive)
820 IP —5A450 (5.25" Dual Sided F loppy DOrive)
820 IP = $A850 (8" Dual Sided Floppy Drive)

820-1I Processor

-1, D.C. Power Supply
2. Processor (CPU) PWA
3. Floppy Disk Daughter PWA or,
Fixed Disk Daughter PWA
4, CRT Assembly
5. Keyboard Assembly

820-11 IP = SA400 (5.25" 5.5. Oual Density Floppy Drive)
820-11 IP- 5A80Q0 (8" S.S. Dual Density Floppy Drive)
820-11 IP - SA450 (5.25" D.5. Dual Density Drive)

820-11 [P~ SA850 (8" D.S. Dual Density Floppy Drive)

H.

I.
J.

Ethernet Connection {(via 872/873 Comm
Server)

2-Buffered B Bit Parallel ports

Display Graphics

The CPU is supported by five intelligent periphial
controllers. These devices handle the tasks of
transferring the data to and from the periphial
devices, thus relieving the burden on the CPU.

A. Disc Controller

This device (On the B820-1, it is located on
the Daughter PWA for the floppy or the
fixed) interprets commands from the CPU
and generates appropriaté control signals
for the disc drives. It also interprets status
signals from the disc drives and delivers
them to the CPU upon request. The second
function is to convert parailel data from the
Data Buss to serial data suitable for
recording on the disc and also the
conversion from the serial data resd from
the disc to parallel data suitable to the
CPU. The fixed drive assembly contains a

14030 Controller PWA that in effect telis

the system what type of drives are being
used (SAB00, SA850, or SA1004),

. . B. CRT Controller
820-11 IP - SA1000 (10 MB Fixed Drive) —_—
The devices that make up the CRT
8.2 D. C. Power Supply Controller provide interface for the dispiay
and CPU. The CRT Controller will
The O. C. Power Supply convgrts the AC supply convert data from the system data bus intao
input to three DC voltages required by the system, Horizontal Sync, Vertical Sync and Video
These voltages are +5, +12 and - 12VDC. Each . ' . Y
.) - signels used by the display. The CRT
voltage has short circuit protection by electronic Controller also handles the task of seroilin
current limiting. When any of the outputs are characters up tha scresn 9
overloaded the entire Power Supply will shut down. i)
The +5VDC is provided with overvoltage protection. C. Timer Controiler

8.3 Processor (CPU) PWA

The timer controtler's function is to signal

the CPU when a pre-programmed amount of

time has elapsed. One of the uses of this
timer is the 30 second delay before turning

off the 5.25" Disc Drives.

The processar (CPU) PWA provides the master control for
the system. The Microprocessor is the central processing
unit. It executes programs (software) that are stored in
the 64K Ram and the 2K ROM (820), 6K ROM (820-11),
The 820 IP incorporates a Z80 Microprocessor where as
the 820-II IP incorporates a Z80A. Added features of the
820-II IP processacr are:

D. Serial Interface Controller

This device handles the conversion of the
CPU's parallel data to serial data required
for serial printers and data communications

A. 4 MHz Clock equi i
. . quipment (modems), also the conversion of
B. 2;’?1%53)2 Ports (one dec’cated to serial serial data to parallel data suitable for the
pri CPU. The controller alsn provides status
g' izu[:jlsbyl:ti\rln I_Br_'r‘:’ Access information from the external serial devics
E. Video High?ighting to the CPU. Modem control commands
F. 6K ROM Expansion Capacity fr?:?mlfhe CPU are gensrated by this
G. 2-Fixed Disc Drive Options: co ere

SA606 and SA450
SA1004 and SAB50

The Computer Journal / #63 Center Fold Section

+ Sy

Ra7 Rag
10K oL

39 \WTRG [RAR
Teg}2 B
[o1 o) 7415292 g) P 38 "
R oAl ok CLH
e 5 3 135 - _—
. 08 : "‘, 2 E‘_& . . LOw CURRENT
4 DaLS l
D4 3 e 1 i EATX rcen 29 oo 4 r STep (LAY
' : WO _,.
SN2,ZNG- 5 o 5 J == B2 e
1l STEP > .
uno 7405 SETE L e
03 a 8 wlm=m
-4 o CLLE S Y ooz e L,
a5 2 DAL2 7406 45y 23
ot 4 w8l R3e 68,2107, 35y
og 3 Py Py - BN by N Lo
og] 1" DALD 7400 | 100K N
N 74(5142 R .
3 13 INORCSN

N - 17]
o 2l

11108

SH2, ZNB-4[a4] FLOPPY ! a2 2
CONT 45V 141818 .
SH2,ZN8-3[4F A .o
Y Rp2
IN g2 (G} D _DATA 21 P '50 | e
11 OV]ZNN-3 1Pp)
Y;O «__RAW CAIA l ”Lsz" v et
Ji=1s <—“9 A l.2 . o9 ae
U7“ 1770 Py
4
748 reoob a““—_}l-ll
10 '5"665 74!_514[t5v
R}
f B z g| U3e rg L 53 %
TaLsIe 141808 WRPT - WY PEOTEC | i
) "L Zﬂ +hy
tsy I
5 - Bu.
l 1 —
T4Lsi4 ’53—’ gl el = soy 32 READY _ 1 4y
AM KT Lo FP A1 P2 P 7";5”
SH2 9 (A =t firix
SHZ INJ-Y U9
A est 7415193 HipHE 'L "o 0 HOD . .
L a0 ar gz as ‘ 7406
~ - [,[I ‘ [7 xrospls
Al ‘ & +5v
SH2, Al
NG-T [4¥
wG-r [K ’ 5a0 f
ZNJ-2 [Eim[u e r ‘
sw2,zn8-3 (3G} :"5 : Lque (24 .
sHz,Zu8 Jﬂ—fa ddee VSS-‘Q:I—Z_V]_ L,
swe, zus4ﬁT%ﬁf;s 4cs Bz 28
$H2,Zn%-2 Lamp2l : B {rst Va2 J"‘ oa “
-5 4 S
' sy ' SH2,2NG-$ [23)< = s
Yeelm 02 Moz
224,00 t
T -av s L
wE .
W (22— tthos
3PM
3],
i snz,un-lo*}
sH2,ZN87 [T 2t ksa
SHE,INB-7 w
NmM-7 [BV—"AW DATA SHZ,INB-3 [AF] nW)
SME. 2NB-2 [AH 10R8
)
14LSI5T sz, 2n8-2(AL }-ik '
3 'I: uro? 3HT, TN 8- AT I Sqce
* 5y Jio T,
2} [4_£0 DA (57 2y s ([, *L—'n’%:’: z
4 %J*’*‘— £} 58 zcos a4 g ool
o 0 S i 34 PR s || [O
U2 3 28 ZC/ ot £ Py
2MHZ 2z ale 524 T _Roy h
swe, -9 (B 15 pen P 1 2cmo2 8 lfi: \
! “ieo /2 XS
t_ + 5y 4 3H6,IN L4 ZZ}’-Q—‘;"" L
= g SN2, NE-2 o
o&DY A=S'4" o
ZnG-8 [T ™ : £ STB| o, oo
e 374 —
znn-o (@} < —

26 Center Fold Section The Computer Journal / #63

+5vy

The Computer Journal / #6

17190 [RR] SH2,ZNN-4] 7"
A
SH2 , ZINN-4 10K
e 8/NS
SENRA NS v ane-i-
LI +5Y e A0 -2,
BT _ g- 1t % 173
12 [S W 8 BANK (7] <we 2N 08
N e Do) ; _
ad 50" Iy, 3 4 "SRV sy 3, zn Pt CHARACTER
28 . e s 4S54 SET
28 Bl 1
. s Ji-3
sm2,216-5 (EN o, 4 e e (T
2 N m3
MOREA (57 7 ne 2 o
, o o YO5 e o2 SR -7 ©os (seH-2)
e a - .
- o i Blarotl— OeELL 51~
K80 7406
FLOPPY | pagii. 3[,., 4 QVOENT -5
pio T¢00
- PASTAP™.
paroy i
sH2,2uM-10 (EP— 2513 wip??) 2 i
S
sHz,2hg-7 [TPAQB Slep™ pert 'ﬂ(@ I 81, 52-8
140514
sz, zug-1 (AR elam pee R A § 02
SHZ INB-2 Gipp2288 _ 3%jicra 6 SR) LN
. 7451?\1
sH2, zn8-3 AEFSB— w0 pea ! 2«@’ B, i2-5
74LSia
SHE,INB-2 ATP S — 2w 3R 2 X83 , j2-4
0.)8 i e ‘ YIRS
2l cq:l._l,_____, _
ke 110sh Jz-3
SH2,ZN 8-+ (ArERRPID S e pe1 22 m;s% 4 & 22
pag il "a@sms“ XBS 021
PRLTH nl'l)] X8sT8 J2-
" 140514 L34
PBROY f—rd
1o 159
ZQI HI I
SH6, ZNE-2 GDPPRT N P21 Z) Sk, ZNM-2
FLOPPY CONLP
KBD INPUT
CTC
- - —
SV ST SO AR - Bhing, ol xm‘
!
THI Pt 450 WLCPICAHLIN o T MU SRR TRl A T
oy O (SR i | fT0H L (S e e
D 2 ! A oroman c————--—-m‘m;::'
e n 3 "y oy Janmmex i :::;-r-';‘-::;:—-—::——m :
me- s Aecae] i< Toeidh - . -
IN B-7: SH2, 23N-4 - O P53 3 Wl 52 EMATC - JTws, S
SHG. ING-2 — @E} TR 7 M sl B 136P82359 N &
SHG INN-) f— povean ‘ Mis=e_1 : = B

3

Center Fold Section

28

E. Paeralle] Intsrface Controller

This device is usad ss an interfuce betwean
the CPU and the parallel keytoard. It aiso
generates some control signals used as Disc
Drive selects and memory bank selecting.

8.4 DISC DRIVES (5.25")

The left and right disc drives are identical except
for the placement of jumpers/resistor networks on
the disc drive PWA's. Each of the Floppy Disc
Drives contains the following.

1
2.
3.
4,
S.
6.
7.
8.
9.

DC Orive Maotor

OC Head Stepper Motor
Read/Write Head

Head Load Solenoid And Load Pad.
Track - Detector Switeh

Index Led/Detactor

Write Protect Switch

Control PCB

Drive Indicator LED

DC Power is conatantly supplied through the disc
interface harness from the power supply in the
processor. The DC drive motor is turned on when
the appropriate contro] signa| is active from the
processor PWA. The disc drives rece’ve control
signals through the disc signal harness from the
Floppy Disc Controller on the processor (CPU) PWA,
These control signals select the appropriate disc
drive, control the head atepper mator, the head load
solenoid and select read or write modes.

The: disc drives send the following status
information through the disc signal harneas to the
EW%{:)’ Disc Controller on the Processor (CPU)

1. Ready (Floppy disc losded and st speed)

2. Index {Index hols sansed)

3. Track 00 {Read/Write Head positioned on
Track 0)

Write protect (Write protected diac loaded
in the drive)

4.

The function of the Disc Drives is to magnstically
record (write) data on a floppy disc, and to play
back (read) information that had previously been
sto~ed on a floppy disc.

\

8.5 DISC DRIVES (8")

The left and right Disc Drives are identical except
for the placement of jumpers on the disc drive
PWA.,
Each of the Floppy Disc Drives contains the
following:

AC Drive Motor

DC Head Stepper Motor
Read/Write Head

Hesd L_oad Solenoid and LLoad Pad
Track 00 LED/Detector

Index LED/Detector

Write Protect LED/Dstector
Contral PWA

Orive Indicator LED

.

AC power is constantly supplied through the Disc
AC power cord to the drive motors from the AC
Power Distribution Panel when the power on switch
is on. The disc rotetional speed is 360 rpm. The
drive pulleys and belts are different sizes for the
USN/XC systems (60Hz) and the RX systems (50 Hz)
In order to obtain the 360 rpm speed.

The Internal Supply supplies DC power (+5 VDC, -5
VDC, +24 VDC and GND) threugh the Disc DC
Harness . The DC power is used for the logic

circuits and driver/receiver circuits on the PWA's.
The Disc Drives receive contral signals through the
Pisc Signal Harness from the Floppy Disc Controller
on the Processor CPUPWA. These control signals
select the appropriate Disc Drive, control the Head
Stepper Motor, the Head Losd Solencid, and select
Read or Write modes.

The Disc Drives send the following status
information through the Disc Signal Harness to the
Floppy Disc Cantroller.

. Ready (Floppy Disc loaded and at speed)

. Index (Index hole sensed)

Track 00 (Read/Write Head positioned on
Track 0)

4. Write Protect (Write protected disc loaded
in the drive)

Al R

The function of the Dlsc Drives is to magnetically
record (write) data on a floppy disc, and to play
back (read) information that had previously been
stored an a floppy disc.

8.6 5.25" AND 8" DUAL SIDED

The SA450 and SA850 Disc Drives are also used on
the 820 Famiiy. The functions are the same as the
SA400 and the SAB00 with the exception of a
additional signal "side select" thus allowing the Dual
sided 5.25" drives to have 80 tracks and the dual
sided 8" drives to have 154 tracks. On the 820-I]
Processor, we have double density capability. This is
cbtained by the use of MFM (modified frequency
modulation) and M2FM (modified, modified
frequency modulation) rather than FM, which is the
standard method of encoding data on the diskette.
This causes the write oscillstar frequency to double.
Data transfer rate is aisc doubled. Thus we now
have dual sided, double density which s
approximately four times the capacity of a single
sided, single density.

8.7 CRT ASSEMBLY

The CRT Assernbly contains a complete CRT
monitor requiring oniy DC Power, horizontal and
vertical Sync and video inputs.

The CRT has a 12 inch screen with a display
capability of 24 lines of 80 characters per line. The
Video rate is 15MHz. :

The 820-11 has Business Graphics made possible by a
4*4 Pixel Resalution. It has two sets Of 128
character sets (1 U.S. FONT, 1 GRAPHIC FONT),
plus the capabilities for 2 additional sets. The 820-
Il also has Character Blinking and Highlighting. The
RX units have a INTERNATIONAL FONT,

8.8 KEYBOARD ASSEMBLY

The Keyboard provides the keyswitches that upon
activation generate the sppropriate ASCI code to
the parallel interface controller on the CPU PWA.

Center Fold Section The Computer Journal / #63

CONNECTING IDE DRIVES

by Tilmann Reh

Special “Featu;re ‘
lntermediate';USers

Part 2: IDE Basics

Now it has been already one year since I described my 8-bit
ECB-bus-based IDE interface here in TCJ. The delay in con-
tinuing with my description was caused by difficulties with the
communication path between me and Bill Kibler. Since then,
some questions have come up which were not covered by that
article. So here is the missing information, I hope.

Remembering the Basics

Let us first have a short look at the drives we want to use. When
discussing the different hard disk interfaces in my last article,
I already pointed out that IDE drives of the AT-type, thus often
called AT-bus drives (Bill Kibler calls them ATA drives, but
this abbreviation is not the usual one, at least in Europe), are
the ones with the best price/performance ratio one can get. This
is even more the case now. So IDE drives still are the very first
choice if you are looking for a good and cheap hard disk for
your computer.

But what’s special with those drives? I already mentioned that
the IDE drive contains the complete hard disk controller. It is
accessed with a system-bus interface compatible with the PC/

AT (ISA) bus and offers control and data registers still com-

patible with the very first PC/AT hard disk controller (based on
the WD 1010 controller chip). But even if those specifications
come from something I don’t like at all, why not use the low-
price components for real computing (i.e., with a CPU280)?

Bringing the hard disk controller into the drive electronics
offers some advantages. One of the main features is that you
don’t have a serial data stream with fixed bit rate between
controller and drive. Thus, there’s no need for conditioning the
signals for the interface, and vou can use any bit rate. As a
result, the hard disk performance is limited by the drive tech-
nology, not by the interface’s bit rate. This is one reason why
today’s drives are so much faster than the older ones. And
technologics like Seagate’s ZBR (Zone Bit Recording) are
possible with hardware-independent interfaces.

There is another main feature of bringing the controller into
the disk drive. Today’s drives have very extensive checks for
data security. They store error correction codes (ECC) together
with the sector data and automatically correct single-bit errors,
so the sector need not be re-read in those cases, Additionally,
if a sector is found to be too unreliable, it is internally marked

The Computer Journal / #63

as bad and the data is mapped to a spare sector (usually there
is one spare sector per track). All this is absolutely transparent
to the user. So you now know the reason why today’s intelligent
drives don’t have ‘‘defect lists’’ any more.

Since the PC’s have such bad software (and hardware, too),
there is another thing the integrated controller can do: translate
virtual addressing information into physical. That means that
the IDE drive is able to emulate another drive with different
parameters (cylinder count, number of heads, and sectors per
track). For the PC this is necessary because many PCs don’t
support drives with other than the historical 17 sectors per
track, and many do not support free configuration of the drive
parameters (only selection from a table is allowed). Also, some
PCs mask off some bits of the cylinder number, since the first
controller only had a 10-bit cylinder register -- so nearly every
IDE drive still supports an emulation mode with less than 1024
cylinders and 17 sectors per track.

The IDE Interface

As mentioned above, the IDE interface is almost completely
identical with a subset of the PC/AT expansion bus, so the
drive can be connected (almost) directly to that. The only
things required externally are two select signals (/O address
decoding). This gives us some information about how the
interface works. In a PC the drive is accessed directly by the
CPU via I/0 accesses to registers internal to the drive. The disk
data is transferred via the 16-bit data bus, but for compatibility
to the older systems (again!) only 8 bits are used for command
and status information. Besides the data bus, there are the
standard Intel-type data strobe signals (/IORD and /IOWR), a
few address lines, and some special signals. The connector is
a 40-pin header, not to be confused with the XT-type IDE
interface connector, which is also a 40-pin header but needs
somewhat different hardware and totally different software!

The IDE interface allows connection of two drives with one
cable. The second drive (slave) is then chained to the first one
(master). However, 1 heard about problems when trying to
connect different drives from different manufacturers. And the
capacities of today’s drive are so high that a single drive will

29

always be enough for an 8-bit personal computer system! So,
I never tried this option.

To understand the interface in detail, let’s have a closer look
at the IDE interface connector and its signals:

1 /RES 2 GND

3 D7 4 D8

5 D6 6 D9

7 DS 8§ DIO

9 D4 10 D11

11 D3 12 DI2

13 D2 14 DI13

15 D1 16 D14
17 DO 18 DIi5

19 GND 20 No Pin

21 /IOCHRDY 22 GND

23 /IOWR 24 GND

25 /IORD 26 GND

27 /IOCHRDY 28 ALE

29 No Connection 30 GND

31 IRQ 32 /1016

33 Al 34 /PDIAG

35 A0 36 A2

37 /CSO 38 /CSl1

39 /ACT 40 GND

The signals of the IDE interface can be collected in several
groups: The general control signals are /RES (Reset) and /
PDIAG (Passed Diagnostics). The data bus consists of 16 data
lines (D0..D15). The access control lines are three address
lines (A0..A2), the select signals /CSO and /CS1 (Chip Select
0/1). and the strobe signals /IORD and /IOWR (and eventually
ALE, the address strobe). The remaining signals (IOCHRDY,
IRQ, /ACT, /1016) are status signals.

Now Let’s Go Into Details.

The reset signal normally is active-low. However, I heard about
drives with an active-high reset signal, but I never saw one (or
read such specifications). The /PDIAG pin carries a bidirec-
tional signal used for chaining two IDE drives (master/slave).
It normally can also be left open.

The data bus carries the 16-bit data words to and from the host.
However, when accessing the control and status registers of the
IDE drives, only data bits 0 through 7 are used (8-bit transfer).
The data bus lines are tri-state lines that may be connected
directly to the host’s data bus. However. to meet the host bus
specs and to avoid noise problems caused by the interface cable,
a bus driver IC should be used to decouple the IDE bus and the
host bus.

The drive is accessed using the selection signals /CSO and /
CS1. This also has historical (compatibility) reasons. Together
with the three address lines. there could be two-times-eight
addresses being occupied by an IDE drive. However, while the
main register sct really has eight registers and is accessed with

30

/CSO active, the other set (with /CS1) has only two valid
addresses. We will have a deeper look at all the registers later.
The data transfer is always strobed by the timing signals /IORD
and /IOWR, for reading and writing, respectively. The address
strobe (ALE) is often unused in the drive; it should be pulled
high for static address lines (non-multiplexed busses).

The status signals are not absolutely nceded to use IDE drives.
Some of these signals are not commonly delivered at all (for
example, /IOCHRDY (1/0 Channel Ready), which is a WAIT
signal for the host when the drive is much slower than the host
processor in terms of interface access times). The /1016 line
informs the host of 16-bit transfers. Since we already know that
data transfers are always 16-bit and everything else is always
8-bit, this is redundant (however, nceded in the PC/ATs for
their ISA bus). Line /ACT (Active) is an output which can be
used for driving a drive-busy LED. Line IRQ is an interrupt
request line that goes active on some internal events (if enabled
by software).

Most IDE drives contain some jumpers that allow some options
to be sclected. This normally includes at least master/slave
selection. Sometimes the /ACT signal may also be jumpered as
an output signalling the presence of a second (slave) drive. The
default state of the jumpers normally need not be changed
(single drive, no special situation).

All interface lines carry CMOS-TTL-compatible signal levels.
However, some signals (IRQ, /PDIAG, /1016, /ACT) are able
to drive higher currents. Those details should be looked up in
each drive’s specifications (for example, the /ACT output sinks
20 mA on my Conner drive. more than enough for an LED).

Accessing the drive is done with the following sequence of
operations: First, the address lines and the chip selects must
be set according to the desired register address. After some
time (a minimum of 25 ns), /IORD or /IOWR is activated. This
causes the data to appear on the data lines (when reading) or
1o be written to the drive (with the trailing edge of /IOWR, but
there are setup and hold times to take care of). Afier a mini-
mum of 80 ns, the strobe signal has to be removed. There are
some more timing requirements, but these are the main ones.

The above timing details might differ from drive to drive.
Always keep in mind that the IDE definition follows the PC/
AT svstem expansion bus and that official standards were not
specificd until two years ago. when the IEEE finally defined
some specifictions (which many PC manufacturcrs are not
following).

Unfortunately, I found that the drives do not match their own
specs in every detail. For example, 1 found that the address
lines of my Conner drive (a CP-3044 with 42 MB) must be kept
stable for much more than the specified sctup time. [n addition,
the drive is very scnsitive to spike noise on the address lines.
even if the noisc appears long belore an access is initiated. [

The Computer Journat / #63

spent a great deal of time struggling with such unlucky details
(fixing other people’s bugs).

IDE Interface Registers

Now that we’ve covered the interface signals and their mean-
ing and usage, let’s look at the registers of the interface. We
saw that there are cight addresses being accessed through /CSO
and two addresses through /CS1. The following is a list of all
the internal registers of an IDE drive:

Write Function

/CS0 /CS1 A2 A1 A0 Addr. Read Function

0 1 0 0 0 1FO Data Register Data Register

0 1 0 0 1 1F1 Error Register {Write Precomp Reg.)
0 1 0 1 0 1F2 Sector Count Sector Count

0 1 0 1 1 1F3 Sector Number Sector Number

0 1 1 0 0 1F4 Cylinder Low Cylinder Low

0 1 1 0 1 1FS5 Cylinder High Cylinder High

0 1 1 1 0 1F6 SDH Register SDH Register

0 1 1 1 1 1F7 Status Register Command Register
1 0 1 {1 0 3F6 Alternate Status Digital Output

1 0 1 1 1 3F7 Drive Address Not Used

The above addresses are those used in the PC/AT. Of course
they are dependent on the decoding of the chip-select signals.
The registers accessed via /CS1 might differ depending on the
manufacturer of the drive. As far as | know, they don’t always
follow the compatibility principle with the first hard disk
controller of the PC/AT.

The registers being accessed with /CS0 are also called the
“Task File’’, so sometimes the IDE is also referenced to as
*“Task File Interface’’.

The error register can only be read. It contains valid informa-
tion only if the error bit in the status register is set. Only five
of the eight bits are used. They have the following meaning:
Bit 7: Bad block. This bit is set when the requested sector’s
ID contained a bad block mark (can be set when formatting the
disk).

Bit 6: Uncorrectable data error. Set when the sector data
can’t be recreated (even with ECC).

Bit4: Requested sector ID not found (wrong sector number).

Bit 2: Command was aborted due to drive status error or invalid
command.

Bit 1: Track 0 has not been found when recalibrating.

The unused bits are always read as zero. However, I guess it’s
best not to rely on that!

The write precompensation register was previously used to set

the starting cylinder for write precompensation (a slight shift
of the serial data stream pulses to compensate for some mag-

The Computer Journal / #63

netic effects on the disk surface). Since IDE drives handle all
that internally, this function is not needed any more. Today,
this register is often used as a parameter register for enabling
or disabling look-ahead reading. We'll have a deeper look at
that when talking about the various commands of IDE drives.

The sector-count register defines the number of sectors to be
read or written with the next read/write command. A zero
value causes 256 sectors to be processed, so the count varies
from 1 to 256. This register is also used during drive initial-
ization to specify the number of sectors per track (remember
the emulation capability).

The sector-number register contains the starting sector number
for any disk access. After a sector is processed, and afier the
command is completed, this register is updated. When an error
occurs, this register contains the ID number of the erroneous
sector. Normally, the sector numbers start with 1 and increase
with each sector, However, by reformatting the disk, this order
and the values may be changed.

The cylinder-low and cylinder-high registers contain the 10-bit
cylinder number to be accessed. Since many drives have more
than 1024 cylinders today, the cylinder-high register is often
expanded to more than two bits. Like the sector-number reg-
ister, these registers are updated after command completion
and after errors. They are also used during drive initialization
as the number-of-cylinders parameter.

The SDH register is a special register serving several functions.
SDH is an abbreviation for **Sector size, Drive and Head’’. The
bits of this register are arranged as follows:

Bit 7: Historical: Extension Bit. When zero, CRC data is
appended to the sector’s data fields. When set to one, no CRC
data is appended. Since today’s drives always use ECC error
correction, this bit must always be set (no CRC).

Bit 6-5: Sector Size. Since today’s drives always have 512-byte
sectors (unchangeable by the user) because PCs are not able to
support other sizes, these bits must always be 0-1.

Bit4: Drive. This bit distinguishes between the two connected
drives when using the master-slave chain. Single drives are
always accessed with the drive bit set to zero.

Bit 3-0: Head number. These four bits contain the head
number (that is, the disk surface number) for all following
accesses. Similar to the cylinder and sector number, these bits
are updated by the drive. The head number field is also used
for drive initialization to specify the number of heads.

The read-only status register contains eight single-bit flags. It
is updated at the completion of each command. If the busy bit
is active, no other bits are valid. The index bit is valid indepen-
dent of the applied command. The bit flags are:

Bit 7: Busy flag. When this flag is set, the task file registers

31

must not be accessed due to internal operations.

Bit6: Drive ready. This bit is set when the drive is up to speed
and ready to accept a command. When there is an error, this
bit is not updated until the next read of the status register, so
it can be used to determine the cause of the error.

Bit 5: Drive write fault. Similar to “‘drive ready’’, this bit is
not updated after an error.

Bit4: Drive seek complete. This bit is set when the actuator
of the drive’s head is on track. This bit also is updated similarly
to “‘drive ready’’.

Bit 3: Data request. This bit indicates that the drive is ready
for a data transfer.

Bit2: Corrected data flag. Set when there was a correctable
data error and the data has been corrected.

Bit 1: Index. This bit is active once per disk revolution. May
be used to determine rotational speed.

Bit0: Error flag. This bit is set whenever an error occurs. The
other bits in the status register and the bits in the error register
will then contain further information about the cause of the
error.

The command register is used to pass commands to the drive.
There are many commands, not always using all parameters in
the task file. Command execution begins immediately after the
command is written to this register. Since this article is already
quite long, I will cover the commands, their parameters, and
their usage in another article, probably in the next TCJ issue.

The alternate status register contains the same information as
the status register in the task file. The only difference is that

reading this register does not imply interrupt acknowledge to
reset a pending interrupt (as the main status register does).

The digital output register contains only two valid data bits. Bit
2 is the software reset bit, which causes a drive reset when
being set, and bit 1 1s the interrupt ¢nable flag.

The drive-address register simply loops back the drive select bit
and head select bits of the currently selected drive. This infor-
mation normally is of no use for the programmer or user.

Last Words

Now that we had a look at the IDE intcrface, we also see the
physical limits of this interface definition. With a fully ex-
panded cylinder-high register, we are able to address up to
65536 cylinders. with up to 16 heads and up to 256 sectors per
track. This results in a maximum addressable drive capacity of
128 gigabytes. 1 think this should be enough for
microcomputing!! However, even if the PC/AT BIOS limi-
tations are encountered, we could address 1024 cylinders with
16 heads and 64 sectors per tracks. giving 512 megabytes
maximum capacity. This is also not bad, at least for small (8-
bit) computer systems, where complete application software
packages require only about 100 kilobytes of disk space.

Next time [would like to talk about the applicable commands
of IDE drives and give examples of how to write software that
accesses those drives. Perhaps I will also return to describing
my IDE interface board for the 8-bit ECB bus in more detail.
If you have questions or details about which you would like to
read more, contact me at the following addresses:

Tilmann Reh

In der Grossenbach 46

D-57072 Siegen. Germany
e-Mail: tilmann.reh@hrz uni-sicgen d400.de

List of Abbreviations:
AT Advanced Technology Class of PC’s
BIOS Basic 1/0 System Hardware-dependent part of OS
CMOS Complementary Metal-Oxid-Silicon Semiconductor technology
CRC Cyclic Redundancy Check Error detection code, sce also ECC
ECB m European standard 8-bit system bus
ECC Error Correction Code Additional data for security
IDE Integrated Drive Electronics Intelligent hard disk interface
IEEE Institute of Electrical and Electronics Engineers
I/0 Input/Output (self-explanatory)
ISA Industry Standard Architecture PC/AT expansion bus
LED Light Emmitting Diode Optoclectronical component
0S Operating System Software which makes computers usable
PC Personal Computer Synonym for the worst computer architecture
TTL Transistor-Transistor-Logic Digital component standard (74xx scries)
XT eXtended Technology Class of PCs, previous to AT
ZBR Zone Bit Recording Variable Density Recording Method

32

The Computer Journal / #63

SCSI EPROM Programmer

By Terry Hazen

Special Feature
Intermediate Project

The Software

A Simple EPROM Programmer for the
SCSI Bus, part I

The SCSI Driver Software

Last time I presented the hardware de-
sign for a simple EPROM programmer
board for the SCSI bus. This time we’ll
look at the software drivers required to
communicate with the board. Our driver
software controls the programmer board
through the NCR5380 SCSI controller
chip on the host computer board. Figure
1 shows the bit-mapped NCR5380 con-
trol registers used by the drivers.

I've written a complete EPROM pro-
grammer utility for this board that runs
under ZCPR3 on 780 and Z180/64180
computers. It’s available as
EPROG10.LBR on your favorite Z-
Nodes. Since the source code for the
whole program (included in the library)
is too long to reproduce here, I've ex-
cerpted the SCSI driver code and pre-
sented it in commented Z80 assembly
language form in Figure 2 so you can
follow along as we look at each process.

Selecting the Programmer Board

The programmer board selection pro-
cess starts by initializing the SCSI con-
troller and setting it to target mode.
Remember that all SCSI control and data
lines are active low. The Current Bus
Status Register is checked to see if the
bus is busy (BSY\ asserted.) If the bus is
busy, the SCSI controller is cleared and
we quit with an error.

If the bus isn’t busy, the programmer
board ID bit is put on the data bus and
SEL\ is asserted. Then we wait to see if
the board answers, watching the Current
Bus Status Register to sce if BSY\ gets
asserted. You’ll recall from last time

The Computer Journal / #63

that when the board sees BSY\ deasserted
and SEL\ asserted, it compares the state
of the data bus with it’s own ID and also
makes sure the initiator’s ID (7) is
deasserted. If it makes the match, it sets
its BUSY flip-flop, asserting BSY\.

After BSY\ has been asserted, we re-
spond by deasserting SEL\, removing
the ID from the bus and clearing the
SCSI controller. Now we’re ready to get
to work.

Controlling the EPROM Address

The EPROM address is controlled by the
outputs of a pair of cascaded binary
counters, which have only two control
inputs. The first input resets the counter
to 0 and the second increments the cur-
rent count by 1. Each of these inputs is
controlled by a decoded combination of
SCSI lines C/D\ " 'SG\, and I/O\ pro-
duced by U4. We reset the EPROM
address by asserting MSG\ and I/O\ and
strobing the REQ\ line to reset the
counters. Incrementing the address is a
similar process. We assert C/D\ and I/
O\ and strobe REQ\to clock the counters.

Reading the EPROM

When the bus phase is set to free (all
control lines deasserted,) the board is in
the read mode and the EPROM byte at
the current address is on the data bus.
All we have to do is read the byte from
the SCSI Current Data Register.
Programming the EPROM

Programming is a little more compli-
cated. We have several programming
methods available. In the traditional
method, you put the data to be pro-
grammed on the EPROM data bus and
apply a 50ms negative pulse to the PGM\

pin to charge the EPROM’s floating gate
beyond a threshold condition. We’ll look
at this method first and then examine
some faster possibilities.

The first step in programming a byte is
to check if the byte is OFFh, the crased
state of the EPROM, with all bits set to
1. If it is, no programming is necessary
and we can go on to the next byte. The
next step is to set the write mode by
asserting I/0O\ and asserting the data bus
bit in the Initiator Command Register so
that the data bus is prepared to accept
data. Now we can put the data byte in
the Output Data Register, which places
it on the data bus. We then write to the
EPROM by asserting the REQ\ strobe
line to place the programming pulse on
the PGM\ pin, holding the strobe for
50ms, then deasserting it. Now we can
deassert the data bus and read back the
data byte to see if it was successfully
programmed. If the operation was suc-
cessful, we can go on to the next byte.

Fast Programming

There are several fast programming al-
gorithms. Be sure to consult the spec
sheets for the EPROM being pro-
grammed to get the details on the rec-
ommended fast programming method,
programming voltages, the maximum
number of programming cycles per byte
and the maximum programming pulse
width before you determine which fast
programming method to use.

The basic fast programming method is
to apply the program pulse for 1ms, then
rcad the byte back to verify it. If the
verification is unsuccessful, the program-
ming write cycle is repeated. This is
done some maximum number of times,
often 20 or 25, until the byte can be

33

verified or the retry count has been ex-
ceeded. Once the byte is verified, a final
programming pulse is applied whose
width is some function of the total pro-
gramming time required to get verifica-
tion. One method uses a pulse of the
same length as total pulse width required
for verification (Ims x number of 1ms
write cycles.) Another method uses a
final programming pulse of 3 times as
much as the total pulse width required
for verification (3 x 1ms x number of
lms write cycles.)

Fast programming algorithms often
specify an EPROM Vcc of 6v to make it
casicr to charge the floating EPROM
gate to well over the threshold program-
ming condition. Vcc switch S1 is pro-
vided to select between Sv and 6v.

Deselecting the Programmer Board

When we’ve finished and are ready to
deselect the board, all we have to do is
assert I/O\, C/D\ and MSG\, and strobe
the REQ\ line to reset the board’s BUSY
flip-flop and deassert BSY\. When we
see from the Current Bus Staus Register

pulse width while SCSITEST provides a
train of programming pulses. Pressing
the ‘< or >’ keys (or their unshifted
equivalents) decreases or increases the
time constant and displays its current
value. When you are satisfied with the
measured pulse width, you can exit the
program and use ZCNFG to configure
EPROGI10’s internal time constant to
the displayed value.

Other SCSI Interface Applications...

Now that we’ve seen how easy it is to
produce special-purpose SCSI boards, [
hope some of you will be inspired to try
your hands at designing useful SCSI
boards. How about a simple SCSI 16L8

Figure 1. NCR5380 Control Registers

PAL programmer for us YASBEC us-
ers? Or a simple SCSI LAN?

What was that? My original YASBEC
EPROM problem? Well, I used the
EPROM programmer board and
EPROGI10 to copy the original YASBEC
boot EPROM to a buffer and write it out
to a binary file. 1used ZP.COM to patch
the file to add the few bytes of code
needed to double the ZS180 clock speed
to a DSEG area of the EPROM code.
Then I used EPROG10 again with a fast
programming algorithm to program a
new (and faster) EPROM. Finally, 1
installed the new EPROM in my
YASBEC, which now comes up very
nicely at 18.4mhz snorting, stomping
and pawing the ground! More Power!

The SCSI EPROM programmer driver software uses the following five NCR5380

control registers to control the programmer board.
ALl control register port addresses
For more information on the NCR5380

computer NCR5380 control port address.
are given as offsets from SCSI.
registers, see TCJ#26, pl12ff.

‘SCSI’/ is the host

Current SCSI Data Register, Output SCSI Data Register (SCSI+0):

that BSY\ has been deasserted, we can B/t 7 Bit6 BitS Bitd Bit3 Btz git1 80
clear the SCSI controller and we're done. | o87 | oB6 | ©DBS | DB4 | DB3 | DB2 | DB1 .| DBO |
dommmenn $-mmmmme D D D EE TR R Fuacana +
Testing the Board . . .
In1t1ator Command Register (SCSI+1) - Write Useage:
EPROG10.LBR also contains Bit 7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 BitO
SCSITEST.COM, a Z80/Z180 test util- ~ +------- #omeenan +osemne- SRREEELD tomemoe- AERRRREE AARREEEE AERERE +
ity to help you work out any problems Assert | Test | Diff |Assert |Assert |Assert |Assert |Assert
} {oht ; i RST Mode | En | ACK BSY | SEL | ATN | Data
you might encounter getting your | 7 __. ———— e ———en M . —— —— N
EPROM programmer board up and run-
ning. It allows you to perform each of Mode Register (SCSI+2):
the driver operations separately and sup- . .)
s simple byte-by-b . Bit 7 Bit6é Bit5 Bit4 Bit3 Bit2 Bit1 BitO
ports simple byte-by-byte programming, | —— —— e ——— —— e — .
| Block | Target| Enable| Enable| Enablte|Monitor| DMA | Arbi-
EPROG10.COM and SCSITEST.COM | Mode | Mode | Parity| Parity| EOP | BSY | Mode | trate
both use a software timing loop witha | M | | Check | Int | Int | | | |
. oo o--o--- D Rt S R e R
ZCNFG-configurable time constant to * ' * ¥ * ’
create the programming pulse width. Target Command Register (SCSI+3) -
While the timing loop is automatically
adjusted for the processor clock speed Bit 7 Bit6 BitS5 Bit4 Bit3 Bit2 Bit1 BitO
R i dammmman dmmmmmaa R duoeuann desausan dommennn P [+
(as found.m the ZCPR3 ;mvlronment) l | | | [Assert |Assert |Assert|Assert|
and the different internal timing of pro- [| | | | REQ | MsG | ¢/ | 1/0 |
cessor types Z80 or Z180/64180, you = +------- hommmen homenae- AERRREES ARRREEE AEREEEE +oooo-- +oooo- +
can use SCSITEST to fine tune the pulse .
width in real time if you have an Current SCSI Bus Status Register (SCSI+4):
ocilloscope. With an empty EPROM it 7 it 6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
socket. you can put an oscilloscope probe #------- ARREEEE AEREREE AERREEED AR EEEE ARRREELE ARREEEE #-m-o-- +
on the PGM\ pin, select the time con- | RT | BSY |REQ |MsG |cC/p | 1/0 | SEL | DBP |
doomaen- L m-ec--- L R R Fommmmmn R +

stant function and measure the actual

34 The Computer Journal / #63

; Figure 2. Sample SCSt EPROM programmer board SCS drivers.
; - 280 assembly language -
; SELECT - Select EPROM programmer board

; DSELECT - Deselect EPROM programmer board and remove it from the bus

; RDBYTE - Read the EPROM byte at the current address

; WRTBYTE - Program the EPROM with the byte in A at the current address
; ADDRST - Reset the EPROM address to 0

; ADDRSTP - Step the EPROM address by 1

EPROM programmer board equates:
scsi equ 58h ; YASBEC SCS! port
target equ 5 ; EPROM programmer board SCSI D

; Select the EPROM programmer board. Once this routine is called,
; we must not perform any ‘normal’ SCS! operations until we call

; dselect.

. Exit: A=error code;

; 0=no error

X 1=SCS! bus occupied

. 2=target not responding (timeout)

select: call dstrobe . Set bus phase to free

Id a,01000000b ; Set target mode
Id cscsit2 SCSI Mode Register
out (c).a ; Target mode set
call status , Get current bus busy status
i Zbusfree ; Busis free
id ER , Else set SCSI bus occupied error
it rstscsi . And return
, The bus is now ours...
busfree: cali dstrobe ; Set bus phase to free
calt abus ; Assert data bus
Id atarget ; Puttarget D on bus
call dataout
Id a,00000100b ; Assert SEL\
Id c,scsit1 SCSi Initiator Command Register
out (c).a ; SEL\ asserted
Wait for BSY\ to be asserted
Id b, 10 ; Try 10 times
\‘Naitblp: push bc , Save counter
call status ; Get current bus busy status
pop be , Restore counter
ip nz,dbus ; We've got the bus
djnz waitbip . Otherwise try again
timeout id 2,2 ; Set target not responding error
i rstscsi ; And return

, Deselect the EPROM programmer board, remove the interface from the
; SCSl bus and return the bus to normal operation.
; Exit: A=error code:

O 0=no error

4=target stuck on bus

&select: Id a,00000111b , Assert [JO\, C/D\, MSG\
Id c,scsi+3 | SCSI Target Command Register

out (c)a : Release board from bus

call strobe ; Assert strobe

call waitims ; Wait 1ms for BSY to get off bus
call dstrobe , Deassert strobe

call status . Get bus status

Id a0 ; Preserve flags and set good return

r zrstscsi; Not busy, so clean house and leave
Id a4 : Set target stuck on bus error

Common SCSI return

rstscsi: push af ; Save error code
ld a,00000000b ; Deassert all control lines
id c,scsi+1 ; SCStInitiator Command Register
out cha ; Bus phase set to free
Id ¢,scsi+2 ; SCSI Mode Register
out {c).a ; Initiator mode set
call dataout , Clear data register
pop af . Restore error code
or a . Set flags
ret

, Read byte from the EPROM at the current address
, Exit: Byte returned in A

rdbyte: push be , Save registers
call dstrobe , Set read mode (bus phase to free)
id ¢,scsi+0 ; SCSI Current Data Register
in a(c) ; Get data byte in A
pop be ; Restore registers
ret

The Computer Journal / #63

; Program EPROM with the byte in A at the current address.
; Exit: Z if programming was successful
B NZ if unsuccessful

;Nrtbyte: push hi

; Save registers

push de
push af
Id (byte)a ; Save data byte
Id a,00000001b . Assert O\
Id cscsi+3 ; SCSI Target Command Register
out {c).a , Write mode set
call abus ; Assert data bus
pop af . Restore data byte
call dataout ; Put data byte on bus
call strobe , Initiate programming puise
call waitS0ms ; Hold programming puise for 50ms
call dstrobe ; Terminate programming pulse
call dbus ; Deassert data bus
call rdbyte ; Read the byte back
Id hl byte ; Point to original data byte
cp (hi) ; Same?
push af ; Save flags
call dstrobe ; Set bus phase to free
call dbus ; Deassert data bus
pop af ; Restore flags
pop be ; Restore registers
pop hi
ret

; Reset EPROM address to 0

addrst: push be . Save registers
td a,00000101b , Assert MSG\ and (/O\
id c,scsi+3 ;| SCSI Target Command Register
out (c).a - EPROM address reset
call strobe . Assert strobe
call dstrobe ; Deassert strobe
pop be
ret

, Step current EPROM address by one

addrstp: push be , Save registers
Id a,00000011b ; Assert C/D\, I/O\
out (c)a ; EPROM address stepped
call strobe , Assert strobe
call dstrobe ; Deassert strobe
pop be , Restore registers
ret

Subroutines getting data from a port
. Get current bus busy status

status: id c,scsi+4 ;| SCSI Current Bus Status
in a,(c) . Get status
and 01000000b ; Check BSY\ status
ret

; Subroutines sending data out a port:
; Assert data bus

abuss i 2,00000001b ; Assert data bus
Id c,scsi+1 ; SCSl Initiator Command Register
out (c)a ; Bus ready to accept data
ret

; Deassert data bus

dbus: id a,00000000b, Deassert all contro! lines
Id c,scsit1 SCS! Initiator Command Register
out (c).a : Data bus deasserted
ret

, Put the byte in A on the data bus
datacut: Id c.scsi+0 ; SCSI Output Data Register

out (c).a . Target 1D is on bus
ret
, Assert the REQ\ strobe
strobe: Id a,00001000b ; Assert REQY - strobe

Id c,scsi+3 | SCSI Target Command Register
out (cla . Strobe asserted
ret

, Deassert SCSI control lines REQ\, MSG\, YO\ and C/D\.
dstrobe: Id a,00000000b ; Deassert all control lines
d c.scsit3 SCSI Target Command Register

out {c).a , Bus phase set to free
ret
byte: ds 1 Data byte storage

; end of software code

oductory Topic

809 Operating Systems

Operating Systems

By Bill Kibler

In our ever on going quest for under-
standing about operating systems, we
need to look at many different systems
and their solutions. A number of our
readers are using systems based on the
Motorola 6809 CPU. A number of oper-
ating systems exist for these machines.

Back in the 70°s Motorola produced the
6800 series of processors. At that time
only the 6800 was available. Later 6801
and through to their power house ver-
sion the 6809. A number of hardware
and later software vendors appeared on
the scene to support these machines.

The Hardware

The hardware came in many flavors, but
the most popular for some time was the
SS50 bus system. These systems are very
similar to the concept of S-100 machines.
The bus is a 50 vertical pin motherboard
with corresponding female sockets on
the plug in card. The I/O often is on the
attached SS-30 bus.

The original products where made by
South West Technical Products and later
by GIMIX. The SWTP were the middie
of the road in quality and price, while
GIMIX was the Cadillac version in all
respects. A number of other smaller ven-
dors packaged products from either ven-
dor while adding their own special cards.
A few went so far as to make complete
systems, and one or two of these vendors
still have original stock for sale.

I contacted Jerry Koppel who ran AAA
Chicago Computer Center and he indi-
cates a few systems and some boards are
still available. He also has some licensed
copies of OS-9 still available for sale.
His collection of boards ranges from a

36

few assembled units to many
unassembled bare boards. He recently
moved and as such his stock is still in
boxes and so he will need some time to
find and check on what is available.
Contact him by leaving a message on his
phone at (708) 202-0150.

Jerry sold his own system under the
Electra name which were a mix of his
own cards with the cabinet and some
cards from Hazelwood Computers. Mike
Smith, the owner of Hazelwood Com-
puters ((314) 236-4372) said he has a
few 6809/8S50 boards available, but most
would be bare boards. When questioned
about selling them, like Jerry he is not
really sure about what actual units and
quantity is available. He is pretty sure he
has 1Meg SS50 bare boards in large
number and would sell them for about
$10 plus shipping and handling (less
than $25.00 for one including manual).
Mike has been building systems for 15
years now; but since 1985 he has been
producing only 68K based units. Based
on Jerry’s comments, Mike makes very
high quality systems, both in design and
operation.

One place that is also producing 68K
boards as well as selling their older 6809
products is Peripheral Technology (404)
973-2156. Fredrick Brown has many
6809 single board units, some with
Winchesters interfaces. He indicated he
still sells one or two units a year of the
6809’s, but mostly his 68K (single board
and the PT-68K) are his current prod-
ucts. Fred sells OS-9 for the 68K units as
well as REX (FLEX like with source
code available) for his units. The inter-
esting product is his ISA BUS compat-
ible 68K mother board (called PT-68K
that fits in standard PC/XT case and
uses clone power supply and interface

cards.) It was featured in August 1988
issue of Radio-Electronics (Computer
Digest section) as a educational system
(see SK*DOS products as well). For more
details see his ad on the inside front
cover.

Digital Research Computers of Garland
Texas sold an English made system called
“The 6809 Compacta UNIBOARD”
which was similar in design to the Big
Board Z80 system that produced the
Xerox 820 and Kaypro systems. 1 have
no idea if these products ever became
successful or are still available. The major
seller of single board systems however
was the Tandy Computer company who
made the Color Computer line of 6809
systems, They stopped sclling them about
three years ago, but new software and
adapters are still being sold. I under-
stand that calling the correct Tandy
number will get you parts and software
for the old CoCo’s, even today.

All of these products could be bought
with either FLEX by TSC or OS-9 from
Microware. Both of which are not sup-
ported by their creators. The only oper-
ating systems worth getting is SK*DOS.
SK*DOS is still being supported and is
available for 6809 and 68000 systems.

FLEX

Flex by Technical Systems Consultants,
Inc., of Chapel Hill, North Carolina was
first on the market. It provided the nor-
mal compliment of disk utilities and stan-
dard operating system programming in-
terface options. Like any operating sys-
tem a programmer writes a program using
the system interface calls. These calls

The Computer Journal / #63

are translated into the necessary internal
operations and calls to external devices.

In reviewing FLEX documents it ap-
pears that most of the I/O options arc
more fixed and less user variable as was
the case with CP/M. In CP/M the BIOS
was designed and written by the maker
of the system. Each vendor (and their

- were many vendors of CP/M systems)
had their own BIOS and special enhance-
ments as well as disk format. In the 6809
world there appeared to be mostly two
vendors for most of the hardware. Those
who came after these two, fashioned their
.work to look like the other two and thus
the I/O or BIOS for these systems 1s
more standardized than variable.

The FLEX manual describes the operat-
ing system as being composed of three
parts, the file management system
(FMS), the disk operating system (DOS),
and the utility command set (UCS). From
the manual ** Part of the power of the
overall system lies in the fact that the
system can be greatly expanded by sim-
ply adding additional utility commands.””
We differ here from other DOS’s in that
there appears to be very limited internal
commands.

Flex I/O is handled very much like PC
CLONE systems in which you have the
standard BIOS and are pretty much stuck
"with it’s features. TSC is very clear about
the FLEX systems not being user change-
able and I belicve that goes somewhat
for the 1/O options. Something similar to
using TSR (Terminate and Stay Resi-
dent) programs is provided as an op-
tional way of adding new features. In
this option, ycu load a program that hooks
the old calling address and replaces it
with the new items entry point. Then
when calling the old option, you are
passed to the new program instead. This
is an acceptable alternate way, but by far
a better option is being able to simply
change the actual BIOS as was done by
CP/M users for years.

I contacted the current owners of FLEX
and they are considering releasing the
source code into public domain. The new
company name is RTMX Inc. of Durham,
NC and they are producing a true unix
like real time operating system. I will be

The Computer Journal / #63

suggesting they submit their source to
Walnut Creek CDROM as they are plan-
ning a orphaned CDROM. Walnut Creek
has been collecting non-CP/M, NON-
MAC, NON-UNIX, and NON-MSDOS
files for this yet to be named disk. If you
have any suggestions or orphaned pro-
grams (like FLEX programs), give Wal-
nut Creek a call (800-786-9907),

Flex is simply a single user operating
system providing reliable operation.
UNIFlex and Miniflex were variations
of Flex produced for multiuser or mini-
mal systems respectively. These last two
products never became successful or
widely used. For more complex and
multiuser operations OS-9 was the sys-
tem of choice.

0S-9

During this period of time UNIX was
being used by most colleges and as such
was gaining popularity. Of importance
was the multitasking features and device
independent options of UNIX. UNIX
provides pipes to direct data from one
program or utility to another file, pro-
gram, or device. These and other fea-
tures influenced and controlled the de-
sign of 0S-9. Unlike the Flex system
which was available for 6800 and 6809
system, OS-9 was pr~duced for the 6809
CPU only. The mu....asking or level II
of OS-9 is for 6809 systems with a
MEemory manager.

As we are starting to see the OS-9 sys-
tem was much more advanced in both
design and features than Flex. This same
0S-9Y system has been moved on to 68000
and 80386 platforms. OS-9 is also a real
time operating system and is embedded
in the CDI ROM systems currently on
the market. OS-9 has been used by many
large organizations including NASA and
General Motors.

When used with memory manager and
cxtra memory, multitasking systems can
be built for the 6809 and level II of OS-
9. Like Flex the system comes fixed for
several of the standard 6809 hardware
designs. Unlike Flex however, you can
write your own device drivers and link
them into the system. If you are a UNIX

hacker you will find most of OS-9 very
similar,

I have talked to the marketing director of
Microware about the legal problems they
have crcated by not supporting OS-9 for
6809 systems. Steve Johnson indicated
they would not be releasing any source
code (even though it is in 6809 assem-
bler) since it gives away their design
concepts which are still valid for the
68000 systems.

Steve indicated they are working at try-
ing to find a way that helps the small
user get legal systems and vet still pro-
tects the embedded system builder who
is still selling and paying royalty fees. |
hope to have an answer on this in the
next issue.

SK*DOS

For the user putting together or buying
a newer system, SK*DOS is the best
option. Since you can not copy legally
any OS-9 and 1 assume Flex svstems, a
source for new and supported operating
systems is needed. Peter Stark has been
sclling his FLEX replacement for over
TEN years. This is a mature and stable
product that runs on both 6809 and 68000
svstems, The two products are different
but have the same disk format and close
enough in other ways that the 68K
SK*DOS has an SK*DOS-6809 emula-
tor. So if you go to the newer 68K sys-
tem, vou can still use your investment of
sofiware on one system.

Unlike FLEX, SK*DOS is better at let-
ting vou do some of the work. The 68K
version is really intended for you to do
yoursclf. A separate BIOS is used and
Peter has a configuration manual to show
you how to do it. For the Micro Cornu-
copia reader, you might check out issues
46 and 47 where Karl Lunt describes
how he brought up an SK*DOS 68K and
created a multitasking system, all on
surplus 68K boards.

When [talked to Peter, he made it very
clear that he intends on continuing to
support his product, and since his lively
hood is NOT related to selling SK*DOS
(he is a college professor), he can do so
at reasonable prices as well. His SK*DOS

37

goes for $75 for either 6809 or 68000
systems. Many standard configurations
are available, so you might give him a
call at (914) 241-0287 to sec what he can
do for your old system. His 24 page
catalog lists many products as well as
hardware platforms he can supply (even
a 6802 running BASIC for $100!) He
sells a 68000 Hardware Course’’ with
a do-it-yourself approach, using the Pe-
ripheral Technology PT-68K mother
board, and his $25 book (contact Peter
for current pricing).

I pressed Peter for an article or a project
using his system, and he indicated a
desire to build a cheap and simple 68K
single board system (bare boards to be
made available) and show our readers
how to bring up his system on it (a new
variation of his older 68K Hardware
Course). Since school is starting for him
and he is not sure how many of our
readers would be interested in such a
project, Peter will have to do some think-
ing and planning before he decides to
under take such a major project. A few
cards and letters from those interested

might help convince him to do that
project (Star-K Software, Box 209, Mt.
Kisco, NY 10549).

I might add that Peter has a number of
other programs and ROM based prod-
ucts to support 6809/68K systems. All
his prices are very reasonable and they
all work as advertised. I believe he also
has a program or two that will convert/
read other disk formats, so you can move
data from your PC Clone to SK*DOS.

Some gotcha’s

I have a GIMIX systems and it came
with FLEX. The ROMs however are
programmed to support both OS-9 and
FLEX. One manual gives you the com-
mands to boot the system using the W
option. This states that itis a Jump to the
Warmstart entry point. On first appear-
ance you might think that is the correct
command to start Flex, but it is not. If
you check the Flex manual it indicates a
U command for GIMIX Flex operation.
Should the system crash and you are left
at the monitor, then you can get back

into Flex by using the W command. From
power up Flex is not loaded and using
the W command only jumps to empty
memory. After Flex is loaded however,
a program will be where W jumps and
thus let you back into the operating sys-
tem.

This problem got me several times, be-
fore I read more closely what the manual
was saying. I first looked at it and just
tried it with a system lockup being the
results. Remembering that the system
did work some time ago, I figured I was
using the wrong command, which was
the problem. Remember there are differ-
ent ROMS for the Flex (simple BOOT)
and the 0S-9 (BIOS is in ROM code)
operations and thus you must get to those
parts differently using the 6809 CPU’s
monitor ROMs.

NEXT TIME
Next time we will look more closely

insides SK*DOS and all the commands
and programs available with it.

Available Software for SK*DOS/68K

The following partial list of SK*DOS software is coded as
follows: UG = SK*DOS Users’ Group; CSC = Computer
Systems Consultants Inc.; PB = Palm Beach Software; SS =
Spray Software; MC = Micronics Research Corp.; SKD =
Supplied with SK*DOS System disk; BBS = Avaiable for
downloading from the SK*DOS BBS at (914) 241-3307; ME =
Michael Evenson BBS at (817)488-8398; OU = Other Users.

ACAT - Print alphabetized disk catalog (SKD)

APPEND - Append two disk files (SKD)

AREACODE - Finds telephone area codes (UG)

ASCII - Convert keypress into its ASCll code (SKD)

ASM - 68000/68010 Native assembler (SKD)

ASMK - Fast 68000 Assembler (PB)

ASMxx - Crossassemblers for Z80, 8048, 8085, many more
(CSC)

BACKUP - Make a backup of a floppy disk (SKD)

BEEP - Add a beep to system prompt (SKD)

BIGCAL - Prints a big calendar (UG)

BUILD - Generate short text files without an editor (SKD)

C - Full K&R Compiler (UG or CSC)

CACHE - Cache program to speed up floppy disk operation
(SKD)

CAL - Prints a calendar (UG)

CALLS - Does analysis of function calls within a C program
(UG)

CAT - Print disk directory with additional data (SKD)

38

CCHECK - Check a C program indentation and comments
(UG)

CHECKSUM - to checksum of disk contents (SKD)
CMODEM - Modem program for communications (UG)
CMON - Debugging monitor (OU)

CMP - File compare program by Jim Hughes (UG)
COMPAR - Compare two files (UG)

COMPARE - Compare two complete disks (SKD)

COPY - copy one or more files between disks, with options
(SKD)

CURSOR - Adjust cursor type (OU)

CUT - Cut out columns from text files (UG)

DAMON - Display drive/trace/sector for each disk access
(SKD)

DELETE - Delete a file from a disk (SKD)

DEVICE - Install a new 1/Q device on system (SKD)

DIFF - Display differences between two text files (SKD)
DIRS - Display current directories on a disk (P K Morrison/
BBS)

DIS - 68000/68010 Disassembler (UG)

DISKEDIT - Examine and edit disk files (UG)

DISKNAME - Display or change name or date of disk
volume (SKD)

DOSPARAM - Display or change current DOS or device
parameters (SKD)

DRIVE - Install or change active system drives (SKD)
ECHO - Echo command line with hex/octal/etc (from Unix)
(UG)

The Computer Journal / #63

EDDI - Screen Editor (PB)

EDLIN - Simple line editor (SKD)

ED - Simple editor, written in C, available in source (UG)
EDX - Unix “ED"-like line editor (UG)

ELIZA - Popular psychiatrist simulator game (SKD)
EMACS - Editor based on Micro Emacs (from Unix) (UG)
EZMODEM - Screen-oriented modem communications
program (ME)

FDUMP - Hex file dump program to examine disk files (UG)
FIND - Find a text string inside a file (SKD)

- FORMAT - Format a floppy disk (SKU)

FROMSDOS - Import a file from MSDOS to SK*DOS (SKD)
FTOH -Copy an entire floppy disk to a hard or RAM disk file
(SKD)

FUNIQ - Remove duplicate lines from non-sorted file (does
‘not sort) (UG)

GREP - Find strings within a file (from Unix) (UG)
HDFORMAT - Format a hard disk (SKU)

HECHO - Hex Echo program by Jim Hughes (UG)

HELP - Provides instructions to user on how to use SK*DOS
(SKD)

HERC - Driver for Hercules menochrome board, emulates
TVI 820C (UG)

HTOF - Opposite of FTOH above (SKD)

IOSTAT - Show /O equipment currently recognized by
system (SKD)

JINK - Relocatable Loader (OU)

KRACKER - 68000 file-to-file disassembler, text can be
reassembled (PB)

LINK - Prepare a floppy disk for booting (SKD)

LIST - Display contents of a disk text file (SKD)

LOCATE - Display load addresses of a binary file (SKD)
LOGIC - Schematic drawing program (PB)

LONGSIDE - Prints two files side-by-side for comparison
(UG)

LS - Similar to LIST command (from Unix) (UC)
MAKEMPTY - Generate an empty data file (SKD)
MEMTEST - Memory test program (UG)

~MICRO-SPELL - Spelling checker (UG)

MODULA-2 - Compiler soon to come

MOZART - Music composition program (PB)

MSDIR - Display directory of MSDOS disk (ME,BBS)
MSREAD - Read an MSDOS disk (ME,BBS)

MSWRITE - Write an MSDOS disk (ME ,BBS)

NCB - C beautifier progrrm to restructure a C program (UG)
NOBEEP - Oppsite of BEEP above (SKD)

NRO - “Runoff’-type text processor (from Unix) (UG)
PAGE - Unix-like progam to page through a text file (UG)
PARK - Park a hard drive before shutting it off (SKD)
PASTE - Paste data from multiple files together (UG)

PAT - Screen Editor (OU)

PDELETE - Prompted delete utility (SKU)

PEEK - Allow examining memory from SK*DOS command
line (SKD)

POKE - Allow changing memory from SK*DOS command
line (SKD)

POSITION - Position cursor on line (Frank Neuner /BBS)
PPR - Page printer program to format output to printer (UG)
PROMPT - Change SK*DOS prompt (SKD)

PROTECT - Change file attributes to delete protect etc.
(SKD)

RAMDISK - Set up a RAM disk to speed up system (SKD)
RBASIC - Full Basic Interpreter (MC)

The Computer Journal / #63

READ - Browse through text files backwards and forwards
(SKD)

REDOFREE - Display disk parameters and rearrange free
space (SKD)

RENAME - rename a disk file (SKD)

REPLACE - String replacement program (UG)

S48KDOS - converts S4/33 records to .com file (UG)
S4LOAD - convert S4/S3 records binary, for EPROM
programmer (UG)

S4UNDOS - converts .com file to S4/83 format file (UG)
S4UNLOAD - converts a binary memory image to 84/83 (UG)
SC - Small C compiler (available in source and object) (UG)
SCAT - Sequenced catalog utility (SKD)

SCSIEVE - Sieve program for testing C compiler (UG)

SE - Screen editor (UG)

SEQUENCE - Change sequence number (for systems without
clock) (SKD)

SFIND - String find program (UG)

SHAR - Archive program for combining files for transmission
(UG)

SINSTR - Another version of SFIND (UG)

SKCC - C Compiler (CSC)

SLEEP - Time delay program for batch files (Frank Neuner/
BBS)

SORT - Sort a file by various fields (UG)

SPELLB - Spelling Checker (PB)

STEPRATE - Change default drive steprate time (SKD)
STONES - Awari-type game (UG)

STRINGS - Find text strings in text or command files (UG)
SUBCAT - Subdirectory Manager (PB)

SYSTEM - Change or display current system default drive
(SKD)

TCAT - Display disk catalog with latest files on top (SKD)
TIME - Display or set clock/calendar setting (SKD)
TMODEM - Modem program for Xmodem protocol (from Unix)
(UG)

TOLOWER - Change upper case files to upper/lower case
‘SKD)

«OMSDOS - Export files from SK*DOS to MSDOS (SKD)
TRACENAB - Set up a program for tracing (SKD)

UBASIC - Basic language interpreter (SKD)

UNCOMPR - uncompress an LZ compressed file done with
compress (UG)

UNDELETE - Bring back a deleted file (SKD)

UNIQ - Delete duplicate lines from a sorted file (UG)
UNSQCMPR - Compare two text files for differences (from
Unix) (UG)

VERIFY - Turn disk verify on or off (SKD)

VERSION - Display version number of a command file (SKD)
WC - Word count program (from Unix) (UG)

WHIMSICAL - Structured language compiler (SS)

WORK - Change or display current work default drive
XARC - File uncompress program (ME)

XREF - create a cross reference listing of a program file (C,
asm. etc) (UG)

YASE - "“Yet Another Screen Editor” (OU)

39

_ Special Feature

~ Intermediate Users

haring the Bus -

MULTIPROCESSING FOR THE IMPOVERISHED

by Brad Rodriguez

A TALKER PROGRAM FOR THE 6809

In our last episode, I supplied the design for a 6809 uniprocessor,
and a simple test program to initialize the UART and exercise
the serial port. Once that program is working, you can run
some debugging software: a 6809 “‘talker” program (Listing
1). This program lets you examine and alter memory and
registers, download code, and set breakpoints. The design of
the talker follows my Z8 talker from TCJ #51 [ROD91]; the
few changes are documented in the listing. You can use the
host program from TCJ #51 for basic memory alterations, or
you can modify the host program to allow editing of 6809
registers. The source code of Listing 1, and a 6809-tailored
host program, are available from the Forth Roundtable on
GEnie as file 6809TALK .ZIP.

GENERAL PRINCIPLES OF SHARED MEMORY

““You're either on the bus or off the bus.’’
- Ken Kesey, as reported in
The Electric Kool-Aid Acid Test

Figure 1 illustrates a simple multiprocessor system. The main
bus (down the center of the diagram) is shared by all the CPU
boards. Any memory or I/O board plugged into this bus is
likewise shared. The bus carries address, data, and control
signals between the CPUs and the memory or /O -- just like
the signals described in the previous installment which control
data transfers between the 6809 and memory.

The important difference is: only one CPU board can use the
bus at any time. If two CPUs try to send an address to memory
simultaneously, they are likely to try driving each address line
to different voltages -- with unpredictable, and possibly dam-
aging results. The same is true of the data and control lines,
of course. To avoid this, each CPU connects to the bus through
a “‘three-state”” buffer, so named because it can drive lines
High (+5 volts), Low (0 volts), or not drive them at all (the
third “‘state’’). Only one CPU board can enable its three-state
drivers at any time. We speak of this CPU ‘owning’’ the bus.

Obviously, we don’t want the other CPUs to do nothing while
they wait to use the bus. So each CPU has some “‘local’’
memory (the RAM and ROM shown for CPU #1). This
memory can be accessed by the CPU chip, even when the three-
state buffers are disabled. Similarly, each CPU board can have

40

some ‘‘local’’ /O. (The on-board address and data lines that
interconnect the CPU chip, ROM, RAM, and three-state buff-
ers are sometimes called the ““local bus.”’)

So, each CPU runs normally until it tries to read or write to an
“‘external’’ address, i.e., an address corresponding to one of
the shared memory or I/O boards. (Each CPU decides for itself
which of its addresses correspond to on-board memory, and
which correspond to devices on the shared bus. This is a
function of the address decoding logic.) When the CPU needs
to use the bus, it asserts the REQUEST\ line, and then freezes
all activity (enters a “‘wait’’ mode). When the bus becomes
available to that CPU, its GRANT\ input will be asserted,
telling the CPU that it can enable its three-state drivers and
continue the memory cycle.

As long as the CPU continues to assert the REQUEST\ line, it
keeps ownership of the bus. It is the responsibility of the CPU
to de-assert the REQUEST\ line after a reasonable time, so that
other CPUs may have a chance at the bus. The timing is shown
inFigure 2. Tuse active-low REQUEST\ and GRANT\ signals;
this is a matter of personal choice. Active-low signals are
denoted in the text by a trailing backslash.

The problem of handling multiple simultaneous requests for
the bus is left to the Bus Arbiter. I've shown this as a separate
block in Figure 1. Many schemes exist for bus arbitration; I’11
design a simple one in Part 3 of this series. For now, suffice
it to say that the Bus Arbiter receives one or more REQUEST\
signals, and issues one and only one GRANT\ signal at a time,

REQUEST/GRANT LOGIC FOR THE 6809

In Part 1, the address range 4000-SFFF hex was reserved for
references to the external bus, i.c., “‘off-board’’ references,
Whenever the 6809 tries to read or write an address in this
range, the signal CS4\ is asserted (pulled low) by the address
decoding logic. This signal can trigger a request for the
external bus.

Recall that the 6809 has an input line, MRDY, which tells the

processor that the memory transfer is not yet complete -- as
long as MRDY is held low, the mermory cycle is ““stretched.”

The Computer Journal / #63

This can ‘‘freeze’’ the 6809 while it waits for the external bus.
(On the Z80, this signal is named WAIT\))

We want the 6809 to ‘‘freeze’” whenever:
a) it is trying to access an external address, and
b) it has NOT been granted the external bus.

The basic solution to this is shown in Figure 3. When CS4\is
asserted (low), the REQUEST\ for the external bus is asserted
" (low). While CS4\ is low and GRANT\ is high (bus not
granted), MRDY will be held low. Since this freezes the
address bus, CS4\ (and REQUEST\) will remain low. This
continues untilt GRANT\ is pulled low, causing MRDY to go
high, and allowing the cycle to complete. When the memory
transfer is finished, CS4\ will go back high, de-asserting RE-
QUEST\. And as long as CS4\ is high, the state of GRANT\
is a “‘don’t-care.”’ Note also that the three-state drivers are
enabled when (and only when) GRANT\ is asserted.

Not so fast! Consider a memory read cycle. In Figure 3, when
GRANT\ is asserted, the address and control are enabled onto
the external bus, and MRDY is pulled high. But the 6809
interprets MRDY high to mean that the cycle is complete and
data is available. There is no time for the memory to respond
to the address and output its data!

The circuit in Figure 4 solves this by delaying the low-to-high
transition of MRDY. When BUSWAIT\ goes low -- signifying
a need for the CPU to wait -- MRDY goes low immediately
(because of the active-low CLR inputs on the flip-flops). When
BUSWAIT\ goes high, two clocks must occur before MRDY
follows (because the high is clocked through two flip-flops).
With a 4 MHz clock, this can be a delay of 250 to 500 nsec,
depending on when in the clock cycle BUSWAIT\ goes high.

-Since we’re making no assumptions about the Bus Arbiter, we
have to assume that GRANT\ is an asynchronous signal -- that
is, it can go high anytime during the 6809 clock cycle. Using
two flip-flop stages guarantees a minimum of 250 nsec memory
access time. Figure 5 illustrates the timing.

THE IMPORTANCE OF BEING INDIVISIBLE

We now leap forward to consider a software problem: how do
we keep multiple CPUs from altering the same data structure
simultaneously? - This is the problem of ‘‘mutual exclusion™
previously described in TCJ [ROD92]. The classic solution is
the *‘semaphore,’’ which works as well for multiple processors
as it does for multiple tasks on a single processor.. provided
that the semaphore operators WAIT and SIGNAL are indivis-
ible.

In a single-CPU system, a semaphore operator can be made
indivisible by making it a single machine instruction. The
68000 provides the TAS (Test-And-Set) instruction for this
purpose; but a memory rotate or increment/decrement can
serve on the 6809 or Z80. The ‘“‘gotcha’ is that this one
instruction requires two memory cycles: a read followed by a
write. This iscommonly called a ‘‘read-modify-write”” (RMW)

The Computer Journal / #63

WHY NOT PALS?

A TCJ reader asked why I'm designing with discrete logic
instead of PALs. I have several reasons:

1. PALs ~- especially 15 nsec or faster -- are still rather
expensive. Jameco lists the most basic PALs at $2.50
each, and there is no way I could do the complete 6809
board with fewer than two. On the other hand, my
Jjunkbox is well stocked with 7400 series parts and wirewrap
sockets.

2. Not everyone is equipped to program PALs: This is
especially important for a journal like TCJ, which is
trying to make its designs accessible to all readers. Thave
even had clients specify “‘no PALSs,”” because they hadn’t

- invested in the development and production hardware. (I,

incidentally, do have a little-used PAL programmer.)

3. The logic design is “‘hidden”’ inside a PAL. This is
aggravated when the minimal or *‘obvious™ logic solu-
tion is not-the PAL solution (frequently the case). Dis-

crete logic, on the other hand, is easily understandable by

any teader of TCJ (I hope):

4. Frankly, using PALs still feels like *‘cheating’’ to me.
I remember the story told in Soul of a New Machine: when
the engineers couldn’t solve a hardware design problem,
they just put in a block that said *‘PAL here.”” It feels like

-an-admission of defeat.

5. I’'m a member of the “‘old school’” -- I still take pride
in-designing: circuits with elegance and a minimum of

logic. - PALSs only-minimize the number of chips.

6. On the 6809 board, it wouldn't have saved that many -

chips. Excluding bus buffers and I/O drivers -- which

PALs wouldn’t replace -- there are only 5 *‘glue”” IC’son -
the full board. Swapping that for two PALs isn’t a great -
. gain;

7. Pérhaps most important, TCI’s editor specifically re-
quested - hardware articles that didn’t use PALs!

Not all of these reasons would be valid in a commercial
project.. The one-time cost of PAL programmers is trivial
for most companies. The added cost of PAL chips is offset
by the reduced cost of assembly. *‘Cheating” to get a
design out faster is simply good engineering, and the
added flexibility for future design changes alone can
Justify the use of PALs. But this project is educational,
written for impoverished newcomers to digital design.
Here, 1 think discrete logic is best.

Comming Soon
Part 111 of 6809 CPU project

41

FIGURE 1. A THREE-PROCESSOR SYSTEM

Econtrol: eqli st
- 3 |addiress BUS
A A hl —
5L le |ata cra ARBITER
O g ([0
e | ih| |
Reque
CPU #1 _ (Fant
P SHARED
- | MEMORY
CPU #2 e
P SHARED
ST 1O
CPU #3 e
Ysus

FIGURE 2. REQUEST/GRANT TIMING

REQUEST\)
from CPU _] N ... l__
GRANT\ - —“1 /
to CPU .. - / . _{\ _____
1. CPU asks 3. Arbiter 5. CPU says 7. Arbiter may
to use bus grants bus it is done de-assert GRANT\,
by asserting to CPU by with bus by or CPU may keep
REQUEST\ asserting de-asserting ownership until
GRANT\ REQUEST\ another CPU
c requests bus
2. unknown 4. CPU may
time may use bus for %n“e"r';"gw"
elapse some time elapse
FIGURE 6. RMW LOGIC FOR Z80
FIGURE 3. BASIC REQUEST LOC cs4\-[—1
Miv——SET CH»REGUEST\ D CLRG~>REGUEST\
S\ MRDY csin——dctr § a
(WAITY I\
ENABLEL @) o — (b)
REQUEST GRANT\
FIGURE 7. RMW LOGIC FOR 6809
FIGURE 4. "FIXED" REQUEST LOGIC — 1
—ﬁ CLR CLR
CS4\] QD CH——®REQUEST\
cs4l Buswam| i CHR o) | CLR L wRov g G
z CITIWAITY /\ N\
three-state PAN ¢ N ¢ E *1-————|
REGQUESTY GRANT: ENABLEY 4MH2.__L____!

osc

FIGURE 5. MRDY TIMING

GRANT\ QQ(A)QQ

BUSWAITY
MRDY ' '

42

FIGURE 8. 6809 RMW TIMING

read write

REOUEST\:—I_ ‘ . . ‘ K
SO R N | l

modity " next opcode’

fetch ¢ '

The Computer Journal / #63

memory access: the memory byte is read, a bit is set (modified),
and the byte is written back out to memory. Since *‘modify”’
takes some time, another CPU could obtain the bus between the
read and write...and it’s remotely possible that the second CPU
would alter the same sempahore during that time. At megaHertz
clock rates, even the ‘‘remotely possible’ occurs too often!

The solution is obvious: the first CPU should not relinquish the
bus until it has completed the read-modify-write operation.
- The REQUEST\ signal must be stretched accordingly. 68000s
and 8086s provide a status signal for this purpose. For the
6809 or Z80, we must create our owi.

RMW Logic for the 280

The Z80 is the easier case. We can’t necessarily tell when an
RMW memory reference is complete, but we can tell when the
next instruction begins. The Z80’s M1\ signal is pulled low at
the start of each new instruction (during opcode fetch).

Figure 6a shows a simple circuit to stretch REQUEST\. When
CS4\ goes low (indicating an external access), it clears the flip-
flop, forcing REQUEST\ low. Eventually the bus will be
granted, releasing WAIT\, and the “‘read’’ part of the cycle
will occur. During the ““modify’’ part of the cycle, CS4\ may
go high, but REQUEST\ will remain low. For the “write,”
CS4\ will go low again, but -- since this CPU still owns the bus
-- GRANT\ is still low, and no wait states will be inserted.
When the next instruction begins, M1\ will go low, forcing
REQUEST\ back high and releasing the bus.

The circuit of Figure 6a will not work if opcodes are being
fetched from external memory, since CS4\ and M1\ will be low
simultaneously. (This usually will force both flip-flop outputs
high.) One fix would use CS4\ to ‘“‘qualify’” the Set input to
the flip-flop, so that when CS4\ is low the Set input is forced
high. Another fix, (Figure 6b) uses the direct Set/Clear inputs
to override the clocked data storage. The rising edge of MI\
will clock the flip-flop high, unless CS4\ is still asserted.

RMW Logic for the 6809

The 6809 doesn’t provide a convenient M1\ signal like the Z80.
Fortunately, the 6809 is completely deterministic, and its data
sheet [MOT83] spells out the cycle-by-cycle execution of each
machine instruction. For the shift, rotate, increment, and
decrement instructions, the sequence is:

(varying number of cycles to get operand address)
cycle N-2: output operand address, fetch data
cycle N-1: output address FFFF, no data transfer
cycle N output operand address, store data

where each “‘cycle’” is one cycle of the 6809°s E clock. Thus,

all read-modify-write operations on the 6809 place one *‘dead”’
cycle between the read and the write. So, RMW operations can

The Computer Journal / #63

be made indivisible by strefching REQUEST' by two extra E
cycles.

Figure 7 shows a circuit to do this. This is the same “*stretch-
ing™ circuit used previously, only it is synchronous -- the
inputs always change at the same time relative to the E clock.
Figure 8 gives an approximate timing diagram.

When the read is performed to an “‘external’ address, CS4\
goes low and thus REQUEST\ immediately goes low. This
read cycle may be stretched until the bus becomes available.
(The E clock will also be stretched.) During the modify cycle,
CS4\ will be high and a high level will be clocked into the first
flip-flop. Before the high can be clocked into the second flip-
flop, CS4\ will be pulled low for the write cycle. CS4\ must
remain high for two consecutive cycles before REQUEST\ is
de-asserted. This will occur sometime in the next instruction.
(Unless, of course, the next instruction also accesses external
memory. Note that this logic works properly if instructions are
being fetched from external memory.)

OTHER CPUS?

The principles described here for the Z80 and 6309 can be
adapted for most microprocessors. The CPU must have a
WAIT input; thus the 8051 is not suitable. The CPU should
have a memory-modify instruction (rotate, shift, or increment/
decrement); otherwise, REQUEST\ has to be stretched over
several machine instructions, and bus performance will suffer.
This makes the 1802 a poor choice.

In the next installment I'll add this logic to the 6809
uniprocessor, design the bus arbiter. and add a few ““frills.”

REFERENCES

[MOT83] Motorola Inc., 8-Bit Microprocessor and Peripheral
Motorola data book (1983).

[ROD91] Rodriguez, B. J., ““A Z8 Talker and Host,”’ The
Computer Journal #51 (Jul/Aug 1991).

[ROD92] Rodriguez, B. J., “*Forth Multitasking in a Nut-
shell,”” The Computer Journal #58 (Nov/Dec 1992).

«command -ai ; output in Intel hex format

MOTOROLA 6809 **MICRO-TALKER"* MONITOR PROGRAM
(c) 1990, 1993 T-Recursive Technology
placed into the public domain for free and unrestricted use

A minimal monitor program for the Motorola 6809.

Used in conjunction with a **smart’’ host program to examine &
modify memory, and to set and execute breakpoints in machine
language and Forth.

The Talker program uses only registers for memory examine and
modify, and only a small amount of stack RAM for breakpoints.
Only about 300 bytes of PROM are used; no interrupts are used.
The Talker may be operated half-duplex over a bidirectional
serial line.

The program accepts characters from a Signetics 2681 DUART.

Characters 30h to 3Fh are treated as hex digits and are
shifted into a one-byte data register

43

Characters 20h to 2Fh are command codes:

20-23 reserved for future use (ignored)

group 2: breakpoint / debug support
24 =set a Forth *‘thread"" breakpoint
25=set a Forth *‘code field’* breakpoint
26 = set a machine language breakpoint
27 = fetch lo byte of address (adrs lo -> data & output)
28 = fetch hi byte of address (adrs hi -> data & output)
29 = read back data register (data -> output)

group 1: minimal talker
2A = fetch byte & incr addr (mem or reg -> data & output)
2B = store byte & incr addr (data -> mem or reg)
2C =setlo byte of address (data -> adrs lo)
2D = set hi byte of address (data -> adrs hi)
2E =setmemory ‘‘page’” (no function on 6809)
2F="''go” (jump to current adrs)

Internal register usage:
Y = address
X (ow byte) = data byte
D(AB) =working
S = stack pointer

Revision history
v1.0 23 Aug89 original Super8 program
v1.1 25Feb90 support for breakpoints and Forth words
v12 7May 90 function codes reassigned
Z8v 1.0 2Dec90 modified for Zilog Z8
6809v 1.0 25Jul93 modified for The Computer Journal 6809
Uniprocessor

Macros for half-duplex communication on a bidirectional link,
¢.g., a bidirectional RS-485 serial line. Define these macros

to control the transceiver connected to the serial port.

If full-duplex is to be used (separate transmit and receive data
lines), define these as ““null”> macros.

N.B.: the PseudoSam Level [assembler does not support macros.
‘TXON’ and *TXOFF" are commented out wherever used.

TXON - tums serial port transmitter on, and receiver off.
y TXOFF - tums serial port transmitter off, and receiver on.

,txon .macro

5 Retums:

5 Uses:
.org h’fed0
.equ spsave,0 ; RAM location for saving S
.equ vecs,2 ; RAM address of a jump table
equstackh’100 ; RAM address of bottom of stack
equ duarth*6000 ; base address of 2681 DUART
.equ txemt,8
.equ tady,4
.equ rxrdy, 1

; 2681 Initialization Table. Each word in this table contains
, fegister-number:contents in the hilo bytes, respectively.

initbl: .dw h’022a ; Command Register A: reset rx, disable m¢ & tx
.dw h*0230 ; Command Register A: reset tx
.dw h’0240 ; Command Register A: reset error status
.dw 0210 ; Command Register A: reset MR pointer
dw 1’0013 ; Mode Register A(1): 8 bits, no panty
.dw 1’0007 ;, Mode Register A(2): | stop, RTS & CTS manual
.dw h’01bb ; Clock Select A: tx & rx 9600 baud
.dw h’0205 ; Command Register A: enable rx & tx
.dw h’0a2a ; Command Register B: reset rx, disable < & tx
.dw h’0a30 ; Command Register B: reset tx
.dw h’0a40 ; Command Register B: reset error status
.dw h’0a10 ; Command Register B: reset MR pointer
.dw 1’0813 ; Mode Register B(1): 8 bits, no parity
dw h’0807 ; Mode Register B(2): 1 stop, RTS & CTS manual
.dw h’09bb ; Clock Select B: tx & rx 9600 baud
dw h’0a05 ; Command Register B: enable rx & tx
.dw h’0430 ; Aux Control Register: counter mode, xtal/16
.dw h’062d ; Counter Upper, and
.dw h’0700 ; Counter Lower: 2d00 hex = 50.000 msec
.dw h’0d00 ; Output Port Configuration: all manual
.dw h’0e03 ; Set Output Bits: OP0 and OP1 low
.dw h’0500 ; Interrupt Mask Register: all disabled
endtbl:

; The program enters here on a reset.
; The stack pointer is initialized to a location in RAM. This
, RAM is only needed if breakpoints are to be used -- the talker’s

, memory examine & modify instructions don’t use the stacks.

3 .endm
B main: Ids #stack | set stack pointer to top of page zero
; txoff .macro clra , set direct page register to 0
H endm tfr a,dpr
K ; Inttialize DUART from the table above.
; STANDALONE INITIALIZATION Idy #initbl
N ldx #duart
; Foruse when the monitor is used as a standalone program iloop: ldd ,y++ ;, fetch a:b from table
; ina6809 development board. In this case, the monitor stbax ; store b at duart+a
» islocated in high PROM, to be started on reset. The UART cmpy #endtbl
B gisters are *‘minimally’” initialized, to allow full-duplex bne loop
, senal communication at 9600 baud, 8 bits, no parity.
; The interrupts are vectored to a supplementary jump table ; fall thru to talker
; inRAM.
; Expects: reset state for all registers

THE.SCROUNGEMASTER 11

Interested in a printed-circuit board for the 6809 multipro-
cessor? I've been exchanging email with TCJ reader An-
drew Houghton, who wants to build a ‘‘Poor Man’s
Transputer’’ out of the 6809. This prompted some improve-
ment and expansion of the original ScroungeMaster I design.
Namely:

a) four RS-485 serial ports using two Z8530s, instead of the
2681
b) two parallel I/O-ports, using a 6522

- ¢) memory mapping logic for expanded memory: 32K on
board PROM, 32K or 128K on-board RAM, and 384K of off-
board (bus) address space

The driving principle is still Cheap Parts: I figure the in-
creased cost of ICs over the ScroungeMaster I is about $9
(Jameco prices). No PALs.

Wire-wrapping one of these boards is enough of a headache
-- I'd like to avoid wire-wrapping three more. If we can get
commitments for twenty boards, 1’1l do the PCB layout and
get boards fabricated at a local vendor. If interested, send me
GEnie mail (B.RODRIGUEZ2), Internet email
(b.rodriguez2@genie.geis.com), or drop a postcard to Brad
Rodriguez, Box 77, McMaster University, 1280 Main Street
West, Hamilton, Ontario L8S 1C0 Canada.

The Computer Journal / #63

TALKER MAIN ENTRY POINT
MACHINE LANGUAGE BREAKPOINT ENTRY

This is the main ““talker’* program. It performs the basic
character processing routine ‘“talk’* repeatedly, until a monitor
command transfers control to an application program.

This is also the entry point for machine language breakpoints.
A breakpoint consists of a software interrupt SW13. This
causes all registers to be pushed onto the stack.

Should it be desirable to have an interrupt cause a breakpoint
- eg.,a‘break’’ pushbutton wired to an interrupt input --
the same logic is used.

The breakpoint routine copies the saved flag values into the
talker’s data register, and the saved return address into the
talker’s address register. An immediate **go”” function will
resume with these saved values (as well as the saved 1p).

Entering the breakpoint routine causes the *** character to

be sent to the host. Entering the monitor causes ‘M’ to be sent.
Note also that the main entry point puts its own address onto
the stack; this is so that we can *‘go’" to a routine which ends
ina RET. This “‘normal termination’” can be distinguished from
a breakpoint by the *M’ character.

The stack frame built is:

CCR A B DPR Xhi Xlo Yhi Ylo Uhi Ulo PChi PClo TALKERhi TALKERlo
Fal

| <-all of this is pushed by an interrupt,-> <-this is left->

S andis popped by a ‘‘go’” command. when *talker”
is first entered.

Expects:

Retums:

Uses: 14 bytes of stack

talker: 1dd fitalker ; push the address “talker” under the ‘go’ frame

pshsd

pshs pe,wy x,dp,b,acc , push a dummy retum frame
Ida #h’4d M’ .talker program entry point

bra t0

; Machine language breakpoints use SW13, so they can use
; the same entry point as interrupt breakpoints.
; All registers are automatically saved in the retum frame.

mbreak: ; Machine language breakpoint entry
ibreak: ; Interrupt breakpoint entry

ida #h’2a ;™

; All entry points eventually land here
10: sts >spsave ; save stack pointer where host can find it
tl: Idb duart+1 ; transmit characterin A
andb #xrdy
beqtl
; txon
sta duart+3
12 1db duart+1 ; wait ‘til character finished
andb #txemt
beq 2
, xoff
Idy 105 ; get return address in address register
Idb s , get flags in data register
clra
thr dx
; TALK - SINGLE CHARACTER PROCESSING ROUTINE
. This routine processes one character received from the host.
; Ifno chamcter is received, it ioops.
; ltmay cause two characters to be transmitted to the host.
; Expects:
; Retums:
; Uses: DXY,CCR
done: ; talker is infinite loop
talk: 1db duart+1 | check for received character
andb #oxrdy
beq done

Idb duart+3 ; get character

clm , most operations require A=0
andb #h°3f , mask off all but low 6 bits
subb #h’30 ; if less than 30 -

bes emd ; -it’s a command

The Computer Journal / #63

- 30-3Fh: digit entry

digit: andb #h'0f ; 30-3f hex digit, shift into lo nybble
exg d.x ; old MDR in D, for shifting
aslb
aslb
aslb
aslb ; D=00n0 X=000n
abx ; add new to old, result in X
bra done

, 24-2Fh: command codes

We use a jump table to select the appropriate function routine.
NOTE: Each routine is entered with Y=address, A=0, B=data.
D and X must be swapped back before going back to *done’!
(The label ‘cmdone’ does this.)

’
s
»
s

cmd: andb #h’0f ; convert command codes to 0..0F
aslb 3 *2
exg d.x , table offset in X, datain D
clra , many commands require this
Jmp [tablex]
; function codes
table: .dw cmdone ;20 - no op
.dwcemdone ;21 -noop
.dwcmdone ;22-noop
dw cmdone ;23 -noop
dw settb ; 24 - set thread breakpoint
dw setcb ;25 - set code field breakpoint
dwsetmb ;26 - set machine code breakpoint
dw getlo ;27 - get low address
.dw gethi ; 28 - get high address
dw echo ; 29 - get data register
dw fetch ; 2a - read memory & send to host
dwstore ; 2b - store data at address
dw setlo ; 2¢ - set low address
.dw sethi ; 2d - set high address
.dw cmdone ; 2e - set extended address (no op)
.dw go 3 2f- ““call’” address

; 24H: set a Forth *‘thread’’ breakpoint at the given address (2 bytes)
, this puts a the address of the **breakpoint™” pseudo-word into
 aForth thread (a list of addresses of Forth words). It is the
, responsibility of the user to ensure that this is a valid thread
; address, and to save the previous value.
settb: 1dx #tbreak

stx,y

bra cmdone

; 25H: set a Forth **code field” breakpoint at the given address (2 bytes)

; this changes the code field associated with a given Forth word to
; point to a machine-language breakpoint routine. Itis the

, responsibility of the user to ensure that this is a valid code

; field address, and to save the previous value.

;. >>>For the 6809 DTC Forth, this is the same as function 26H<<<

; 26H: set a machine language breakpoint at the given address (2 bytes)
, this puts a machine-language SW13 at the given address. Itis

, the responsibility of the user to ensure that this is a valid

; instruction address, and to save the previous value.

setmb: Idx #h°113f , SWI3 instruction
s,y
bra cmdone

, 2TH: copy low address byte to data register, and send to host
. Note that this destroys the previous data register contents.
; Use function 2Dh to save that value first, if needed.

getlo: tiry,d ; address to data register
clra , data register (hi) always zero!
braechol ;gosendit

, 28H: copy high address byte to data register, and send to host
; Note that this destroys the previous data register contents.
; Use function 2Dh to save that value first, if needed.
gethi: thry,d R

exg ab , address hi to data register (10)

clra , data reg (hi) always zero

braechol ;gosendit

; 29H: read back contents of data register

echo:

45

.command -ai ; output in Intel hex format

Simple test program for The Computer Journal's 6809 Uniprocessor
; B. Rodriguez 11 March 1993

.org h'ff0C
.equ duart h'6000 ; base address of 2681 DUART
.equ txrdy 4
.equ nxrdy, 1

; 2681 Initialization Table. Each word in this table contains

. register-number.contents in the hi:lc bytes, respectively.

initbl: .dw h'022a ; Command Register A: reset rx, disable rx & tx
.dw h'0230 ; Command Register A: reset tx
dw h'0240 ; Command Register A- reset error status
dw h'0210 ; Command Register A: reset MR pointer
.dw h'0013 ; Mode Register A(1): 8 bits, no parity
.dw h'0007 ; Mode Register A(2): 1 stop, RTS & CTS manual
.dw h'01bb ; Clock Setect A: tx & nx 9600 baud
.dw h'0205 ; Command Register A: enable nx & tx
dw h'0a2a ; Command Register B: reset rx, disable nx & tx
dw h'0a30 ; Command Register B: reset tx
.dw h'0a40 ; Command Register B: reset error status
.dw h’'0a10 ; Command Register B: reset MR pointer
.dw h'0813 ; Mode Register B(1): 8 bits, no parity
.dw h'0807 ; Mode Register B(2): 1 stop, RTS & CTS manual
.dw h'08bb ; Clock Select B: tx & x 9600 baud
dw h'0a05 ; Command Register B: enable rx & tx
.dw h'0430 ; Aux Control Register: counter mode, xtal/16
.dw h'062d ; Counter Upper, and
.dw h'0700 ; Counter Lower: 2d00 hex = 50.000 msec
.dw h'0d00 ; Output Port Configuration: all manual
.dw h'0e(3 ; Set Output Bits: OP0 and OP1 low
.dw h'0500 ; Interrupt Mask Register: all disabled

endtbl:

, The test program enters here on a reset.

; This program doesn’t use stacks, so the stack pointer doesn't

; need to be initialized.

entry:

; Initialize DUART from the table above.

echol: ; txon - turn on transmitter (tx buf is empty)
tfrb,a , transmit high nybble
Isra
Isra
lsra
Isra
ora #h’30
sta duart+3

&l 1da duart+1 ; wait *til buffer ready for 2nd char
anda #txrdy
beq tx1

tfrb,a ; transmit low nybble
anda #h’0f

ora #h’30

sta duart+3

tx2: {da duart+} ; wait ‘til character finished
anda #txemt
beq x2 ; txoff

cmdone: clra ; needed afier ‘echo’, otherwise just in case

exg dx
Ibra done

; 2AH: fetch byte from memory and transmit

i‘etch: db y+ , fetch and increment address
braechol ;go send data

; 2BH: store byte in memory

store: stb y+
bra emdone

; 2CH: set low address byte
; D=00nn Y=hhll --> Y=hhnn D=00nn
setlo’ exg y.d
clrb
exg y,d ; Y=hh00
leaydy ,Y=hhnn
bra cmdone

; 2DH: set high address byte
; D=00nn Y=hhll --> Y=nnll
sethi; exg y,d
clra
exg y,d ; Y=001l
exgab
leay dy , Y=nnll
exgab 3 D=00nn
bra cmdone

, 2EH: set extended address byte (memory page)
, >>>not used on the 6809 <<<

3

46

Idy #initbl

ldx #duart
iloop: ldd ,y++ ;fetch a:b from table

stba,x ; store b at duart+a

cmpy #endtbl

bne iloop
. Simple memory test, to check locations 2000 to 3FFF hex
outer: . Memory test, one pass

\da#h'2e '’ character means good

Idx #h'2000 ; starting address
mtest: Idb #1 ; rotate this through all bit positions
bittest: stb %

cmpb x

bne bad

aslb

bne bittest

bra good
bad: anda #h'fS | error encountered: change '’ to'$"
good: leax 1,x ; next address,

cmpx #h'4000 ; and ioop

bne mtest
; Ouptut the character in the A register, over serial port A
tioop: Idb duart+1

andb #trdy

beq tloop

sta duat+3
; Print all remaining ASCIl characters up through 7F hex

inca

bp! tloop

, Now wait for a received character, and echo it and all following characters.

rloop: Idb duart+1
andb #nxrdy
beq rloop
Ida duart+3
bra tioop
: The reset vector for the 6809 is located at address FFFE hex.
.org h'fffe
.dw entry
.end
; 2FH: go to given address (resume execution at given address)

; Note: if breakpoints are not being used,

; go: jmpy
; is an acceptable substtute here

5

go: sty 10,8 ; store program counter in retum frame
stb s , store flags in retun frame
orce #h’80 ; force all regs popped on ‘rtr’
il , restore regs & go to given address

FORTH LANGUAGE BREAKPOINT ENTRIES

, These are the entry points for Forth language breakpoints

5 The firstis the **code field”” breakpoint. This is an address
which can be stored in a Forth word’s code field, to cause a

; break whenever that word is executed. This kind of breakpoint
, can be setin any Forth word.

, »>>In the 6809 Direct-Threaded-C ode implementation, the

; paramneter field of every Forth word begins with machine code
) So, an ordinary machine-code breakpoint can be set in the

) first byte of a word. <<<

; Thesecond kind is the “‘thread’” breakpoint. This is an address

; which can be patched into a high-level *‘thread’’, to cause a

, break when a certain point is reached in high-level code. The

, thread is a series of addresses of Forth words, executed by the

; inneror ““NEXT" interpreter. So, we provide the address of a

; dummy Forth word whose execution action is to invoke a machine
, language breakpoint. The Forth execution state can be deduced

, from the registers.

equ cbreak,mbreak , the code field breakpomt is simply
; a machine language breakpoint set in a DTC *“code field"* what follows is the

, parameter and code field of a **headerless’” Forth word, to invoke the breakpoint routine.

; (In DTC, thus is simply a machine code fragment which does a breakpoint.)
tbreak: swi3 , the thread breakpoint is simply
, a pointer to this code fragment

, 6809 RESET AND INTERRUPT VECTORS

, Reset and SWI3 are used by the tatker program
; All other interrupts are vectored to a jump table in low RAM

org h*fin

.dw mbreak | SWI3 - breakpotnt

dw vecs+0 ; SWI2

dw vecs+4 | FIRQ

dw vecs+8 | IRQ

dw vecs+h’0c ; SWI

dw vecs+h’10 ; NMI

dw main ; RESET - it & enter talker
end

The Computer Journal / #63

REMINISCING and MUSINGS
By Frank Sergeant

Guest Feature
All Readers
Comment and Response

I'd always heard that potatoes can ex-
plode if baked without being stuck with
afork. Ididn’t doubt it was possible, but
I never _really_ believed it until [ran a
little experiment. It took many tries, but
onc day, Whoompf! potato _all_ over
the oven!

So, until I finally try it, I probably won’t
_really believe an xyz table made with
cheap threaded rod won’t work.

Several people wrote in response to my
article in #62. Thank you very much. I
enjoyed the comments and suggestions.
If you were on the verge of writing but
didn’t quite get around to it, please do
write. I'd love to hear your thoughts on
the various subjects I discussed last time.

One writer suggested printing PCB art-
work on two transparencies and using
. them together to make the black lines
dark enough. What a great idea! I had
considered running the transparency
through the printer twice to make it
darker, but the registration isn’t accu-
rate enough for that. He thinks shooting
a photosensitive board through a paper
master won’t work because of the amount
of UV the paper would absorb. I men-
tioned last time that this _will work
fairly well when shooting onto litho film,

Another writer emphasized the impor-
tance of the BIOS as ‘“the software that
knows the differences in the hardware.”’
I knew that. T just said it was an urge.
He also reminded me that the MS-DOS
disk format is the standard, and must be
supported. I knew that.

I’ve been doing a lot of thinking lately

about what direction I might take my
personal Forth, if it were to diverge from

The Computer Journal / #63

Pygmy. I have not come up with any
satisfactory answers. I've considered a
32-bit Forth running in a large, flat ad-
dress space. This would require a *386SX
or better. Should it look like Pygmy?
Should it run on the bare metal or re-
quire a DOS extender? Should it use
DOS to start it and later save results, but
otherwise run entirely out of RAM with
no DOS services? This is how Charles
Moore’s latest “‘Forth’’ (his OK CAD
system) does it. I haven’t heard it men-
tioned, but it seems to me this last _re-
quires_ an uninterruptable power supply
(UPS). Imagine not only having to reset
your VCR clock, but having to re-do
several hours schematic or PCB layout
work. Ooohh!

Just OK?

Chuck’s OK system sounds very inter-
esting, I saw it demonstrated several
years ago at FORML, the Forth Modifi-
cation Laboratory conference held every
year over the Thanksgiving weekend in
Asilomar, California. I was lost in the
crowd, so I didn’t get the best view. He
was using a ‘386 PC clone with a VGA
display and a 101-key keyboard, although
he was only using 7 of the keys: ctrl, up,
down, left, right, ins, del. It was entirely
menu driven, so no text needed to be
typed in. He says it is not suitable for
word processing. He uses it to lay out the
silicon for a Forth CPU he is designing.
I’ve seen various figures on how many
rows and columns he uses on the screen.
I _think he had 15 rows and 20 col-
umns. It was really pretty and I could
read it from a distance. I wish I were
looking a characters that big and pretty
right now as I type this article. How-
ever, he did not have lower case and did

not have _all _ the upper case and punc-
tuation.

‘386 Assemblers

Surely you already know it, but the 80386
processor is a giant 32-bit machine hid-
ing behind a 16-bit 8086 facade. Most
PCs still use the ‘386 as just a fast 8086,
without putting it into fancier modes.
I’ve been writing ‘386 assemblers, try-
ing to make one pretty. I haven’t had
much luck. As a comparison, the 8088/
8086 assembler in Pygmy takes up about
22 blocks, without much crowding, The
first of 3 recent attempts only generated
32-bit code, but fit in only 10 (fairly
crowded) blocks. My goal is to make it
fitin 3 blocks. The next two tries offered
the option of generating either 32-bit or
16-bit code. Both took about 9 or 10
blocks. The 3-block solution seems com-
pletely out of reach as long as I insist on
a full assembler. I think getting it down
to 3 blocks will require an artist’s eye to
choose which instructions and address-
ing modes can be thrown away. All
three assemblers run under Pygmy, a 16-
bit Forth, but can generate 32-bit code.
If they are destined for a large 32-bit
address space, why should I care whether
the source for the assembler takes 10
blocks instead of 37 Well, I can live with
10.

Compatibility

I keep returning to this. Maybe I'll just
stick with Pygmy. It is already DOS and
BIOS compatible and already works with
the standard MS-DOS disk format. And,
if I really need the 32-bit address space,
I can use one of my 32-bit assemblers to

47

temporarily change to 32-bit protected
mode and then back again.

32-bit Protected Mode

In my Intel’s house are many mansions.
The ‘386 must be the 8th wonder of the
world. Iam thoroughly impressed that
Man has designed and successfully imple-
mented so massive a creation. Raise it
from the miniature of silicon to a human
scale and start strolling through its gar-
dens, torture chambers, auditoriums, and
gymnasiums. It is far larger than the Taj
Mahal or all the Pyramids in Egypt put
together. It has lots of hidden passages,
with panels that open only if you press
the secret buttons in the correct sequence.
Otherwise, it’s the mummy’s curse for
you, bud.

1 finally worked out the kinks in getting
into and back out of 32-bit protected
mode. Getting _into_ 32-bit protected
mode is fairly simple. It requires setting
up an interrupt descriptor table and a
global descriptor table, loading pointers

to those tables, setting a bit in a control
register, clearing the instruction prefetch
queue, doing a long jump into a 32-bit
segment, loading the segment registers,
and setting up your new stack. (Did that
sound simple to you?) Getting back out
is what gave me a fit. I finally worked
it all out, though. Leave out one little
step and you get to reboot the computer
and try again. And all this is easy com-
pared to some of the things the ‘386 can
do.

Southwest Texas State University

I survived the Unix programming course
I mentioned last time. Too bad I can’t
say I enjoyed it. Once you've had a
Human Factors course, every course be-
comes a Human Factors course.

The Computer Science Department sec-
retary and the instructors of the the ar-
chitecture and C courses keep talking
like I'm really going to be teaching those
labs in the fall. I think they are making
a terrible mistake, but what do I know?

Will I get into PLDs in the labs? Only
time will tell. One correspondent highly
recommends them, and points out that
he needs to stock only two parts (16v8
and 22v10). OK, building a PLD pro-
grammer just climbed a notch or two on
my list of things to do.

FTP

Pygmy is now available via **anonymous
fip”’ from OAK.oakland.edu and other
sites. Again, drop by the computer room
of any local university and someone can
probably show you all about fip’ing files
or even do it for you. Look for the file
pygmyl4.zip in the forth subdirectory.

Conclusion

I"d love to hear from you. If you have
questions, suggestions, comments, solu-
tions, or just want to set me straight, you
can reach me at 809 W. San Antonio St.,
San Marcos, TX 78666, or via email to
{s07675@acadcmia.swt.edu on Internet
or F.SERGEANT on GEnie.

CLASSIFIED, FOR SALE, AND WANTED

Amstrad (c) PCW SIG: $9 for 6 bi-
monthly newsletters dealing with the
most popular CP/M machines still in
production. Learn where to buy 3"
discs, hoe to add 3.5 and 5.25 drives
and where to buy the 8 MHZ Sprinter
board with room for 4 Meg of RAM.
Make check out ot Al Warsh, 2751
Reche Cyn Rd #93, Colton, CA 92324,

For Sale: Collector’s Guide to
Persnal Computers and Pocket Cal-
culators. Prices and illustrations in-
cluded. 336 pages. $14.95 plus $2.00
shipping. Fred Hartfield, Box 52466,
New Orleans, LA 70152. Digitial
Cottage BBS (504) 897-5514, help.
support, sales, of old systems.

Now Avaiable: 96TPI Drives for
Kaypros, $12.00 + shipping. Mr.
Kaypro, Chuck Stafford at (916) 483-
0312 (eves).

Availabe; Legal copies of CP/M
($25), many bootable formats avail-

48

able. Disk copying, most formats includ-
ing Apple CP/M. Manuals and more!
Lambda Software Publishing. 149 West
Hilliard Lane, Eugene, OR 97404-3057,
{(503) 688-3563.

Wanted: User Manual, 5.25 Boot disk
and software, any Lazer Video Disks for
a CP/M computer know as JOIN SYS-
TEM (ID 12428) made by C3 Inc. for
military recruiting. Surplus in the 80's.
Came with LDP1000 a Sony video

player. Will pay reasonable amount for
copies. DMT, PO Box 9064, Newark,
NJ 07104.

Wanted: information about Seequa
Camilion computer. Need boot disk and
how-to information. This is a CP/M and
MS/DOS machine. Edward Epps, 1000
Lenore St., Nashville, TN 37206.

Wanted: All LCOMOTIVE Software
written in LOCASCRIPT. This is used
on an AMSTRAD running CP/M+. Have

several programs but need help get-
ting started using the few programs
that came with the machine. Looking
for OTHELLO for Amstrad. Don
Heeter, 484 Timothy Drive, Rich-
mond, IN 47374-1009.

Classified ads are on a prepaid basis
only. The rate is $.30 per word for
subscribers, and $.60 per word for
others, Therc is a minimum $4.50
charge per insertion.

Support wanted is a free service to
subscribers who need to find old or
missing documentation or software.
Please limit vour requests to one type
of system.

The Computer Journal
P.O. Box 535
Lincoln, CA 95648-0535
B.Kibler@GEnis.com
GEnic = B.Kibler
CompuScrve = 71563,2243
(916) 645-1670

The Computer Journal / #63

The Computer Journal - Micro Cornucopia Kaypro Disks

K1
MODEM PROGRAMS

K2
CPM UTILITIES

K3
- GAMES

K4
ADVENTURE

K5
MX80/GEM 10X GRAPHICS

K6
TEXT UTILITIES

K7
SMALL C VER 2

K8
SOURCE OF SMALL C

K9
GENERAL UTILITIES

K10
780 AND LINKING ASSEM

K1l
CHECKBOOK PROGRAM &
LIBRARY UTILITIES

KI2
KAYPRO FORTH

K13
SOURCE OF FIG-FORTH

K14
SMARTMODEM PROGRAMS

K15
HARD DISK UTILITIES

K16
PASCAL COMPILER

K17
Z80 TOOLS

K18
SYSTEM DIAGNOSTICS

K19
PROWRITER GRAPHICS

K20
MICROSHERE’S COLOR
GRAPHICS BOARD

K21
SBASIC & SCREEN DUMP

K22
ZCPR

K23
FAST TERMINAL &
RCPM UTILITIES

K24
KEYBOARD TRANSLATOR &
MBASIC GAMES

K25
Z80 MACRO ASSEMBLER

K26
EPROM PROGRAMMER/TOOLS

K27
TYPING TUTORIAL

K28
MODEM 730 SOURCE

K29
TURBO PASCAL GAMES |

K30
TURBO PASCAL GAMES 11

K31
TURBO BULLETIN BOARD

K32
FORTH-83

K33
UTILITIES

K34
GAMES

K35
SMALL C VER 2.1

K36
SMALL C LIBRARY

K37
UTILITIES PRIMER

K38
PASCAL RUNOFF WINNERS
FIRST - THIRD

K39
PASCAL RUNOFF WINNERS
FORTH & FIFTH

K40
PASCAL RUNOFF WINNERS
SIXTH PLACE

K41
EXPRESS 1.01 TEXT EDIT

K42
PASCAL RUNOFF-GRAPHICS

K43
PASCAL RUNOFF-GAMES

K44
PASCAL RUNOFF-PRINTERS

K45
PASCAL RUNOFF-UTILITIES

K46

PASCAL RUNOFF-TURBO UTILS

K47
256K RAM SOFTWARE

K48
C CONTEST WINNERS I

K49
C CONTEST WINNERS II

TC.J-1he Computer Journal

P.O. Box 5§35, Lincoin, CA 95648-0535
Phone (916) 645-1670

Shipping Cost to

Added these costs

U.S.

$1.00

Micro C Disks are $6.00 each plus shipping costs.

Canada/Mexico
Surface Air
$1.00 $1.25

Surface
$1.50

Shipping costs are for GROUPS of 1 to 3 disks.

Europe/Other

Air
$2.50

The Computer Journal / #63

49

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Volume Number 1:

-issues 1t0 8

- Serial Interfacing and Modem transfers

- Floppy disk formats, Print spoole”.

- Adding 8087 Math Chip, Fiber optics

- 8-100 HI-RES graphics.

- Controlling DC moters, Multi-user
column.

- VIC-20 EPROM Programmer, CP/M 3.0.

- CPIM user functions and integration.

Volume Number 2:

+Issues 10to 19

: Forth tutorial and Write Your Own.

+ 68008 CPU for $-100.

- RPM vs CP/M, BIOS Enhancements.
- Poor Man's Distributed Processing.
- Controlling Apple Stepper Motors.

- Facsimile Pictures on a Micro,

- Memory Mapped /O on a ZX81.

Volume Number 3:

- Issues 20 to 25

- Designing an 8035 SBC

- Using Apple Graphics from CP/M

- Soldering & Other Strange Tales

- Build an S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 88K

- Extending Turbo Pascal: series

- Unsoldering: The Arcane Art

- Analog Data Acquisition & Control:
Connecting Your Computer to the Real
World

- Programming the 8035 S8C

- NEW-DOS: series

- Variability in the BDS C Standard Library

- The SCSi interface: series

+ Using Turbo Pascal ISAM Files

- The Ampro Little Board Column; series

- C Column: series

- The Z Column: series

- The SCSl Interface: introduction to SCSI

- Editing the CP/M Operating System

- INDEXER: Turbo Pascal Program to Create
an Index

- Selecting & Building a System

- Introduction to Assemble Code for CP/M

* Ampro 188 Column

- ZTime-1: A Real Time Clock for the Ampro
Z-80 Little Board

Issue Number 26:

- Bus Systems: Selecting a System Bus

- Using the SB180 Real Time Clock

- The SCSI Interface: Software for the SCSI

Adapter
- inside Ampro Computers
NEW-DOS: The CCP Commands
(continued)
» ZSIG Corner

- Affordable C Compilers
- Concurrent Multitasking: A Review of
DoubleDOS

Issue Number 27;

- 88000 TinyGiant. Hawthorne's Low Cost
18-bit SBC and Operating System

- The Art of Source Code Generation:
Disassembling Z-80 Software

- Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop

Compensation

The C Column: A Graphics Primitive
Package
- The Hitachi HD64180: New Life for 8-bit
Systems

- Z8IG Comer: Command Line Generators
and Aliases

- A Tutor Program in Forth: Writing a Forth
Tutor in Forth

- Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

Issue Number 28:

- Starting Your Own BBS

- Build an A/D Converter for the Ampro Little
Board

- HDB4180: Setting the Wait States & RAM
Refresh using PRT & DMA

- Using SCS| for Real Time Control

- Open Letter to STD Bus Manufacturers
- Patching Turbo Pascal
- Choosing a Language for Machine Control

Issue Number 29:

- Better Software Filter Design
- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1
- Using the Hitachi hd64180: Embedded
Processor Design
- 68000: Why use a new OS and the 680007
- Detecting the 8087 Math Chip

Floppy Disk Track Structure
- The ZCPR3 Corner

Issue Number 30:

- Double Density Floppy Controller

- ZCPR3 IOP for the Ampro Little Board

- 3200 Hackers’ Language

- MDISK: Adding a 1 Meg RAM Disk to
Amopro Littie Board, Part 2

- Non-Preemptive Multitasking

- Software Timers for the 68000

- Liltiput Z-Node

- The ZCPR3 Corner

 The CP/M Corner

Issue Number 31;
- Using SCSI for Generalized O

- Communicating with Floppy Disks: Disk
Parameters & their variations

- XBIOS: A Replacement BIOS for the SB180
- K-OS ONE and the SAGE: Demystifying
Operating Systems

- Remote: Designing a Remote System
Program

- The ZCPR3 Corner: ARUNZ Documentation

Issue Number 32:

Language Development. Automatic
Generation of Parsers for Interactive
Systems
- Designing Operating Systems: A ROM
based OS for the 281
- Advanced CP/M: Boosting Performance
- Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-
Depth Look at the FCB
- WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl Terminal Based
Systems
- K-OS ONE and the SAGE: System Layout
and Hardware Configuration
The ZCPR3 Comer: NZCOM and ZCPR34

Issue Number 33:
- Data File Conversion: Writing a Filter to
Convert Foreign File Formats
- Advanced CP/M: ZCPR3PLUS & How to
Write Seif Relocating Code
- DataBase; The First in a Series on Data
Bases and Information Processing
- SCSI for the S-100 Bus: Ancther Example
of SCSI's Versatility
- A Mouse on any Hardware; implementing
the Mouse on a Z80 System

Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services
- ZCPR3 Corner. ARUNZ Shelis & Patching
WordStar 4.0

Issue Number 34:

- Developing a File Enctyption System.
Database: A continuation of the data base

primer series.

- A Simple Multitasking Executive: Designing

an embedded controller multitasking

executive.

- ZCPR3: Relocatable code, PRL files,

ZCPR34, and Type 4 programs.

- New Microcontrollers Have Smarts: Chips

with BASIC or Forth in ROM are easy to

program

- Advanced CP/M: Operating system

extensions to BDOS and BIOS, RSXs for CP/

M22

- Macintosh Data File Conversion in Turbo

Pascal.

- The Computer Corner

Issue Number 35:

- Al This & Moduta-2: A Pascal-like
alternative with scope and parameter
passing.
- A Short Course in Source Code
Generation: Disassembting 8088 software to
produce medifiable assem. source code.
- Real Computing: The NS32032.
-+ §-100: EPROM Bumer project for S-100
hardware hackers.
Advanced CP/M: An up-to-date DOS, plus
details on fite structure and formats.
REL-Style Assembly Language for CP/M
and Z-System. Part 1. Selecting your
assembler, linker and debugger.
- The Computer Corner

Issue Number 36:

- Information Engineering: Introduction.

- Modula-2: A list of reference books.

- Temperature Measurement & Control:
Agricultural computer application.

- ZCPR3 Corner: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

- Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

- SPRINT: A review.

- REL-Style Assembly Language for CP/M
& ZSystems, part 2.

- Advanced CP/M: Environmental
programming.
The Computer Corner.

Issue Number 37:

- C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.
- ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.
- Information Engineering: Basic Concepts:
fields, field definition, client worksheets.
- Shells: Using ZCPR3 named shell
variables to store date variables.
- Resident Programs: A detailed look at
TSRs & how they can lead to chaos.
- Advanced CP/M: Raw and cooked console
1o,
- Real Computing: The NS 32000.

ZSDOS: Anatomy of an Operating System:
Part1.
- The Computer Corner.

Issue Number 38:
- C Math: Handling Dollars and Cents With
C

- Advanced CP/M: Batch Processing and a
New ZEX.

C Pointers, Arrays & Structures Made
Easier. Part 2, Arrays.
- The Z-System Corner. Shelis and ZEX,
new Z-Node Central, system security under
Z-Systems.
- information Engineering: The portable
Information Age.
- Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.
- Shells: ZEX and hard disk backups.
- Real Computing The National
Semiconductor NS320XX.

ZSDOS: Anatomy of an Operating System,
Part 2

Issue Number 39:

- Programming for Performance: Assembly
Language techniques.

- Computer Aided Publishing: The Hewlett
Packard LaserJet.

- The Z-System Corner
enhancements with NZCOM.

- Generating LaserJet Fonts: A review of
Digi-Fonts.

System

- Advanced CP/M. Making old programs Z-
System aware.

- C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

- Shells: Using ARUNZ alias with ZCAL.

- Real Computing: The National
Semiconductor NS320XX.

- The Computer Corner.

Issue Number 40:

- Programming the LaserJet: Using the
escape codes.
- Beginning Forth Column: Introduction.
- Advanced Forth Column: Variant Records
and Modules.
- LINKPRL: Generating the bit maps for PRL
files from a REL file.

WordTech's dBXL: Writing your own
custom designed business program.
- Advanced CP/M: ZEX 5.0xThe machine
and the language.

Programming for Performance: Assembly
language techniques.
- Programming Input/Output With C:
Keyboard and screen functions.

The Z-System Corner. Remote access
systems and BDS C.
- Real Computing: The NS320XX
- The Computer Corner.

Issue Number 41:
- Forth Column: ADTs, Object Oriented
Concepts.
- Improving the Ampro LB: Overcoming the
88Mb hard drive limit.
- How to add Data Structures in Forth
- Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler.
- The Z-System Corner. Extended Multipie
Command Line, and aliases.

Programming disk and printer functions
with C.
- LINKPRL: Making RSXes easy.
- SCOPY: Copying a series of unrelated
files.
- The Computer Corner.

Issue Number 42:

- Dynamic Memory Allocation; Allocating
memory at runtime with examples in Forth.
Using BYE with NZCOM.
C and the MS-DOS Screen Character
Attributes.
- Forth Column: Lists and object oriented
Forth.
- The Z-System Corner. Genie, BDS Z and
Z-System Fundamentals.
- 88705 Embedded Controller Application:
An example of a single-chip microcontroller
application.
- Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.
- Real Computing: The NS 32000.
The Computer Corner

Issue Number 43:

Standardize Your Floppy Disk Drives.
A New History Shell for ZSystem.
- Heath's HDOS, Then and Now.

The ZSystem Corner. Software update
service, and customizing NZCOM.

Graphics Programming With C. Graphics
routines for the IBM PC, and the Turbo C
graphics library.

Lazy Evaluation: End the evaluation as
soon as the result is known.

5-100: There's still life in the old bus.

Advanced CP/M: Passing parameters, and
complex error recovery.

Real Computing: The NS32000.

The Computer Corner.

Issue Number 44:

- Animation with Turbo C Part 1: The Basic
Tools.
- Muttitasking in Forth: New Micros FE8FC11
and Max Forth.

Mysteries of PC Floppy Disks Revealed:
FM. MFM, and the twisted cable.

DosDisk: MS-DOS disk format emulator for
CPIM.
- Advanced CP/M: ZMATE and using lookup

The Computer Journal / #63

and dispatch for passing parameters.

- Real Computing: The NS32000.

- Forth Column: Handling Strings.

- Z-System Corner. MEX and telecommuni-
cations.

+ The Computer Corner

Issue Number 45:

- Embedded Systems for the Tenderfoot:
Getting started with the 8031.
- The Z-System Corner; Using scripts with
MEX.
- The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.
- Embedded Applications: Designing a Z80
* RS-232 communications gateway, part 1
- Advanced CP/M: String searches and
tuning Jetfind.
- Animation with Turbo C: Part 2, screen
interactions.

Real Computing: The NS32000.
+ The Computer Corner.

Issue Number 46:

- Build a Long Distance Printer Driver.

Using the 8031's built-in UART for serial
communications.

Foundational Modules in Modula 2.
- The Z-System Comner, Patching The Word
Plus spell checker, and the ZMATE macro
text editor.
- Animation with Turbo C: Text in the
graphics mode.
- 280 Communications Gateway:
Prototyping, Counter/Timers, and using the
Z80 CTC.

Issue Number 47;

- Controlling Stepper Motors with the
68HC11F

- Z-System Cornet: ZMATE Macro Language
- Using 8031 Interrupts

- T-1: What it is & Why You Need to Know

- ZCPR3 & Modula, Too

- Tips on Using LCDs: Interfacing to the
68HC705

- Real Computing: Debugging, NS32 Muiti-
tasking & Distributed Systems

- Long Distance Printer Driver: correction

- ROBO-50G 90

- The Computer Corner

Issue Number 48:

- Fast Math Using Logarithms
- Forth and Forth Assembler
- Modula-2 and the TCAP
- Adding a Bernoulli Drive to a CP/IM
Computer (Building a SCSI Interface)
- - Review of BDS “Z"
- PMATE/ZMATE Macros, Pt. 1
- Real Computing
- Z-System Corner. Patching MEX-Plus and
TheWord, Using ZEX
- Z-Best Software
* The Computer Corner

Issue Number 49:

- Computer Network Power Protection
- Floppy Disk Alignment w/RTXEB, Pt. 1
- Motor Control with the FE8HC11

The Computer Journal Back Issues

- Controlling Home Heating & Lighting, Pt. 1
- Getting Started in Assembly Language

- LAN Basics

- PMATE/ZMATE Macros, Pt. 2

- Real Computing

- 2-System Corner

- Z-Best Software

- The Computer Corner

Issue Number 50:

- Offload a System CPU with the 2181
- Floppy Disk Alignment w/RTXEB, Pt. 2
- Motor Control with the F68HC11
- Modula-2 and the Command Line
- Controlling Home Heating & Lighting, Pt. 2
- Getting Started in Assembly Language Pt 2
- Local Area Networks
- Using the ZCPR3 IOP
- PMATE/ZMATE Mactros, Pt. 3
- Z-System Corner, PCED
- Z-Best Software
- Real Computing, 32FX16, Caches
The Computer Corner

Issue Number 51:

- Introducing the YASBEC

- Floppy Disk Alignment w/RTXEB, Pt 3

- High Speed Modems on Eight Bit Systems
- A 28 Talker and Host

- Local Area Networks--Ethernet

- UNIX Connectivity on the Cheap

- PC Hard Disk Partition Table

- A Short Introduction to Forth

- Stepped Inference as a Technique for
Intelligent Real-Time Embedded Control

- Real Computing, the 32CG160, Swordfish,
DOS Command Processor

- PMATE/ZMATE Macros

- Z-System Corner, The Trenton Festival

- 2-Best Software, the Z3HELP System

- The Computer Cornar

Issue Number 52:

- YASBEC, The Hardware

- An Arbitrary Wavefo'm Generator, Pt. 1
-B.Y.O. Assembler...in Forth

- Getting Started in Assembly Language, Pt. 3
- The NZCOM 10P

- Servos and the F68HC11

- Z-System Corner, Programming for
Compatibility

- Z-Best Software

- Reat Computing, X10 Revisited

- PMATE/ZMATE Macros

- Controlling Home Heating & Lighting, Pt. 3

- The CPU280, A High Performance Single-
Board Computer

- The Computer Corner

Issue Number $3:
- The CPU280
- Local Area Networks
- Am Arbitrary Waveform Generator
- Real Computing
- Zed Fest'91
- Z-System Corner
- Getting Started in Assembly Language

- The NZCOM IOP
- Z-BEST Software
The Computer Corner

Issue Number 54:
- Z-System Corner
-B.Y.O. Assembler
Local Area Networks
- Advanced CP/M
- ZCPR on a 16-Bit Intel Platform
- Real Computing
- Interrupts and the 280
8 MHZ on a Ampro
Hardware Heavenn
What Zilog never told you about the Super8
- An Arbitary Waveform Generator
- The Development of TDOS
- The Computer Corner

Issue Number §5:
Fuzzilogy 101
The Cyclic Redundancy Check in Forth
- The Internetwork Protocol (IP)
- Z-System Corner
- Hardware Heaven
Real Computing
- Remapping Disk Drives through the Virtual
BIOS
- The Bumbling Mathmatician
- YASMEM
- Z-BEST Software
- The Computer Corner

Issue Number 56;
- TCJ - The Next Ten Years
Input Expansion for 8031
- Connecting IDE Drives to 8-Bit Systems
- Real Computing
- 8 Queens in Forth
- Z-System Corner
Kaypro-84 Direct File Transfers
- Analog Signal Generation
- The Computer Corner

Issue Number §7;

- Home Automation with X10

- File Transfer Protocols
MDISK at 8 MHZ.

- Real Computing

- Shelt Sort in Forth

- Z-System Corner

- Introduction to Forth

- DR. S-100
Z AT Last!

- The Computer Corner

Issue Number 58:
- Multitasking Forth
- Computing Timer Values
- Affordable Development Tools
- Real Computing
- Z-System Cormner
- Mr. Kaypro
DR. §-100
The Computer Corner

Issue Number 39:
Moving Forth
- Center Fold IMSAI MPU-A
- Developing Forth Applications
- Real Computing
- Z-System Corner
- Mr. Kaypro Review
- DR. $-100
- The Computer Corner

Issue Number 60:
- Moving Forth Part If
- Center Fold IMSAI CPA
- Four for Forth
- Real Computing
- Debugging Forth
- Support Groups for Classics
Z-System Corner
- Mr. Kaypro Review
-DR. §-100
The Computer Corner

Issue Number 61:
- Multiprocessing 6809 part |
- Center Fold XEROX 820
- Quality Controt
- Real Computing
- Support Groups for Classics
- Z-System Corner
Operating Systems - CP/M
- Mr. Kaypro SMHZ
- The Computer Corner

Issue Number 62:
- SCS| EPROM Programmer
- Center Fold XEROX 820
- DR S-100
- Real Computing
Moving Forth part Il
- Z-System Corner
- Programming the 6526 CIA
- Reminiscing and Musings
- Modem Scripts
- The Computer Corner

SPECIAL DISCOUNT

15% on cost of Back Issues
when buying from 1 to Current
Issue.

10% on cost of Back Issues
when buying 20 or more
issues.

Maximum Cost for shipping is
$25.00 for U.S.A. and $45.00

for all other Countries.

4 u.s.

Canada/Mexico

California state Residents add 7.25% Sales TAX

_

Subscription Total
Total Enclosed

Europe/Other

exp___ /

Payment is accepted by check, money order, or Credit Gard (M/C,

VISA, CarteBlanche, Diners Club). Checks must be in US funds,

Subscriptions (CA not taxable) (Surface) (Air) (Surface) (Air) Name:
1year (6 issues) $2400 $3200 $34.00 $34.00 $44.00 Address:
2years (12issues) $44.00 $60.00 $6400 $64.00 $84.00
Back Issues (CA tax) add these shipping costs for each issue ordered
Bound Volumes $20.00 ea +$300 +$350 +$650 +$4.00 +$17.00
#20 thru #43 are $3.00 ea. +$100 +$100 +$125 +8$150 +$250
#44andup are$4.00ea. +$1.25 +$125 +$175 +$200 +$350 Credit Card # -
Software Disks (CA tax) add these shipping costs for each 3 disks ordered
MicroC Disks are $6.00ea +$1.00 +$100 +$1.25 +$1.50 +$250
ltems: Back Issues Total
MicroC Disks Total

drawn on a US bank. Credit Card orders can call 1(800) 424-8825.

TC.J 1he Computer Journal

P.O. Box 5§35, Lincoln, CA 95648-0535
Phone (916) 645-1670

The Computer Journal / #63

51

o | Regular Feature
Editorial Comment
~ CPMand LANS

Computer Corner

By Bill Kibler

TOO MANY ZX81’s

" Last issue I made a response to a readers
request and opened up an endless supply
of schematics. Yup folks, it seems the
interest in ZX81 is still very active. Even
seems some people have not given up on
them. Several of the letters talked rather
fondly about the product and what build-
ing one taught them.

Lets see, we have a letter from Michael
Dantzer-Sorensen of Denmark who sent
his German language copy of the sche-
matic and assembly instructions. Seems
the ZX81 was a kit product. Michael
also mentions the Jupiter Ace which was
a Forth in ROM version. I thought about
getting one once until I saw the $300
price tag.

Ken Smyth sent his copy of ZX81 sche-
matics and reminded me that Sinclair
also made a 68008 version. He also in-
dicated that the keyboard is a simple
matrix and should be easy to adapt other
keyboards. Ken is also looking for a copy
of the ““ASZMIC ROM”’, it turned the
ZX81 into a assembly development plat-
form. I'll settle for a copy of the Jupiter
Ace ROM or better yet, source code?

Eric Sakara also sent me a copy, saying

how he “‘cut his teeth’” on the ZX81. He
indicated that the Vancouver Sinclair
Users Group was very advanced, even to
the point of creating some multi-user
software for the machine.

Tom Poulin wrote to say he had written
an article some time ago, on repairing
the keyboards. Maybe I will get Tom to
review it with an eye toward repairing
any membrane keyboard. What our read-
ers probably would be more interested in
is Tom’s article describing elementary
stepper motor circuits. Teaching stepper
motor basics has been one of my long
time projects. So send me a copy of the
article, Tom!

Hetz Goldseger’s letter (along with his
copy of the schematic), pointed out some
variations in the sockets, du¢ to different
RAM devices that could be used. He also
modified a B&W TV for direct video.
Hetz also appreciates the Xerox Sche-
matics, as it is solving some of his prob-
lems,

Well that is it for today, at least as far as
getting schematics! When I print the
Schematic (issue 65 or 66), I will print
all your letters in full detail. So if you
have any more comments, don’t need
any more schematics (please!), send them

along. I am especially interested in know-
ing about how well the ZX81 emulator
works. Also information on the Vancover
Sinclair Users Group would be nice to
see.

Emulators???

Speaking of emulators, I got the Simte]20
CDROM from Walnut Creck and was
amazed to see all the emulators it con-
tained. Besides the Sinclair versions(4),
there was 6800 with real time operating
system, CP/M (7 + onec CP/M86), two
68HC11 emulators, an Apple][, and a
Commodore 64 as well. With the cheap
price of clones, you can sure see why
having access to old software on the new
machines is popular.

Since I am running out of space, next
time I will review emulators in more
detail. I guess it is a great way to use new
hardware with your favorite but old or
broken hardware/software system.

Send those letters and cards to me, Bill
Kibler, TCJ, BOX 535, Lincoln, CA,
95648.

Advertising Rates For The Computer Journal

Size | Insertion 2-3 Inscrtions
Full $400 $360

172 Page $240 $215

1/3 Page $195 3160

1/4 Page $160 $120

Market Place S50 S35

4+Insertions

$320
S$195
S48
$100
838

52

The Computer Journal / #63

Market Place

TC ’ The Computer Journal

Discover
The Z-Letter
The Z-letter is the only publication
exclusively for CP/M and the Z-System.
Eagle computers and Spellbinder support.
Licensed CP/M distributor.

Subscriptions: $18 US, $22 Canada and
Mexico, $36 Overseas. Write or call for
free sample.
The Z-Letter
Lambda Software Publishing
149 West Hilliard Lane
Eugene, OR 97404-3057
(503) 688-3563

Advent Kaypro Upgrades

TurboROM. Allows flexible
configuration of your entire
system, read/write additional
formats and more, only $35.

Replacement Fioppy drives and
Hard Drive Conversion Kits. Call
or write for availability & pricing.

Call (916)483-0312
eves, weekends or write
Chuck Stafford
4000 Norris Ave.
Sacramento, CA 95821

" TCJ MARKET PLACE)

Advertising for small business
First Insertion: $50
Reinsertion: $35

Rates include typesetting.
Payment must accompany order.
VISA, MasterCard, Diner's Club,

Carte Blanche accepted.
Checks, money orders must be

US funds. Resetting of ad
consitutes a new advertisement

at first time insertion rates.
Mail ad or contact
The Computer Journal
P.O. Box 63§
Lincoln, CA 95648-0535

\. /

CP/M SOFTWARE

| 100 page Public Domain Catalog, $8.50 plus $1.50 shipping
l and handling. New Digital Research CP/M 2.2 manual, $19.95

| plus $3.00 shipping and handling. Also, MS/PC-DOS Soft-
| ware. Disk Copying, including AMSTRAD. Send self addressed,
| stamped envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

S-100/1€€€-696

IMSAl Altair
Compupro Morrow
Cromemco

and more!

VESEDEHEEE AT TV IO OV ER R RRE LR IRk

Cards. Docs - Systems
Dl‘. S" 100

Herb Johnson,
CN 5256 #105,
Princeton, NJ 08543
(609) 771-1503

New from
M&T Books!

; Forth:
B The New Model §

Jack Waehs
I\

$44.95 1-55851-277-2

MeT 1
E'E Available al bookstores
Technical Books for everiu here

Technical Timex or call | '80(]‘()88'&%{3241

8 BITS and Change
CLOSING OUT SALE!
All 12 Back Issues
for only $40
Send check to
Lee Bradley
24 East Cedar Street
Newington, CT 06111

(203) 666-3139 voice
(203) 665-1100 modem

PCR's in Minutes

From LaserPrint!*

81/2"x 11" * Or Photocopier
Sheets Use household
100% MBG iron to opplu

A\~(\-Q Q.Q.\

I"nP BI.UE PnP WET

fFor High Precision €asy Hobby
Professional PCB Layouts Ouohtv PCB's
1. LaserPrint 1. LassrPrint
2. lron-On | 2.lron-On
3. Pesl-Off 3, Soak-Off w/ Water
4. €tch 4, €ich
fAin €xtra Layer of Resist Transfers Laser or

for Super Fine Traces Copier Toner os Resist

* ' 905h$30/405h$50/100Sh$100 Blue/Wet (No Mix)di

Sampie Pack 5 Shts Blue + 5 Shts Wet $20
VISH/MCIPOICKIMO $4 S&H -- 2nd Day Mail

Techniks Inc. P.O. Box 463 Ringoes NJ 08551
(908)788-8249

